#include <tree_skeletons.h>
Static Public Member Functions | |
template<typename K1, typename K2> | |
static dist_tree< typename K1::result_type > * | map (const K1 &k1, const K2 &k2, dist_tree< typename K1::argument_type > *t) |
Map skeleton with Function Objects. | |
template<typename K1, typename K2> | |
static dist_tree< typename K1::result_type > * | zipwith (const K1 &k1, const K2 &k2, const dist_tree< typename K1::first_argument_type > *at, const dist_tree< typename K1::second_argument_type > *bt) |
Zipwith skeleton with function object. | |
template<typename K1, typename K2, typename PSI, typename PHIL, typename PHIR, typename GG> | |
static K1::result_type | reduce (const K1 &k1, const K2 &k2, const PSI &psi, const PHIL &phiL, const PHIR &phiR, const GG &G, const dist_tree< typename K1::argument_type > *t) |
Reduce skeleton with Function Objects. | |
template<typename K1, typename K2, typename PSI, typename PHIL, typename PHIR, typename GG> | |
static dist_tree< typename K1::result_type > * | uAcc (const K1 &k1, const K2 &k2, const PSI &psi, const PHIL &phiL, const PHIR &phiR, const GG &G, const dist_tree< typename K1::argument_type > *t) |
Upwards accumulate skeleton with Function Objects. | |
template<typename OPLUS, typename GL, typename GR> | |
static dist_tree< typename OPLUS::result_type > * | dAcc (const OPLUS &oplus, const typename OPLUS::result_type &e_oplus, const GL &gl, const GR &gr, const typename OPLUS::result_type &c, const dist_tree< typename GL::argument_type > *t) |
Downwards accumulate skeleton with Function Objects. | |
template<typename A> | |
static dist_tree< A > * | distribute (const node< A > *tree) |
Distribute skeleton. | |
template<typename A> | |
static dist_tree< A > * | distribute2 (const node< A > *tree) |
Distribute skeleton. | |
template<typename A> | |
static node< A > * | gather (const dist_tree< A > *tree) |
Gather skeleton. | |
template<typename A> | |
static dist_tree< A > * | shiftp (const A &rootval, const dist_tree< A > *tree) |
Shift each value to its children. | |
template<typename A> | |
static dist_tree< A > * | shiftl (const A &leafval, const dist_tree< A > *tree) |
Shift each left-child's value to its parent. | |
template<typename A> | |
static dist_tree< A > * | shiftr (const A &leafval, const dist_tree< A > *tree) |
Shift each right-child's value to its parent. | |
Classes | |
struct | reduce_result_t |
Structure to represent the result of local reduce and local uAcc, used in the reduce and uAcc skeletons. | |
struct | size_and_critical |
Definition at line 22 of file tree_skeletons.h.
|
Downwards accumulate skeleton with Function Objects. This skeleton computes in a top-down manner updating an accumulative parameter (initially c) with an associative operator (oplus) and functions (gl for left subtree and gr for right subtree).
For parallel implementation, the binary operator Definition (in Haskell): dAcc :: (c -> c -> c) <assoc> -> c <unit> -> (a -> c) -> (a -> c) -> c -> BTree a a -> BTree c c dAcc (oplus) e_oplus gl gr c (Leaf a) = Leaf c dAcc (oplus) e_oplus gl gr c (Node b l r) = Node c (dAcc (oplus) e_oplus gl gr (c oplus gl b) l) (dAcc (oplus) e_oplus gl gr (c oplus gr b) r) To call this skeleton, you don't need to specify the template types.
Sample: t2 = dAcc (oplus) e_oplus gl gr c t1 t2 = tree_skeletons::dAcc( oplus, e_oplus, gl, gr, c, t1 );
|
|
Distribute skeleton. This skeleton distributes an input tree to processors. The input tree must be a perfect binary tree (i.e., all the internal node has just two children).
|
|
Distribute skeleton. This skeleton distributes an input tree to processors. The input tree must be a perfect binary tree (i.e., all the internal node has just two children).
|
|
Gather skeleton. This skeleton gathers nodes from a distributed tree into a tree.
|
|
Map skeleton with Function Objects. This skeleton applies function k1 to every leaf and function k2 to every internal node. Definition (in Haskell): map :: (a -> c) -> (a -> c) -> BTree a a -> BTree c c map k1 k2 (Leaf a) = Leaf (k1 a) map k1 k2 (Node b l r) = Node (k2 b) (map k1 k2 l) (map k1 k2 r) To call this skeleton, you need to specify the types below.
Sample: t2 = map k1 k2 t1 t2 = tree_skeletons::map( k1, k2, t1 );
|
|
Reduce skeleton with Function Objects. This skeleton collapses the tree in a bottom-up manner by applying k1 for every leaf and k2 for every internal node and its children. Definition (in Haskell): reduce :: (a -> c) -> (a -> c -> c -> c) -> BTree a a -> c reduce k1 k2 (Leaf a) = k1 a reduce k1 k2 (Node b l r) = k2 b (reduce k1 k2 l) (reduce k1 k2 r)
To guarantee the correctness of the parallel implementation, the function Conditions (in Haskell): psi :: c -> d phiL :: d -> c -> d -> d phiR :: d -> c -> d -> d phiG :: d -> c -> c -> c k2 b l' r' = G (psi b) l' r' k2 b l' (k2 rb rl' rr') = G (phiL (psi b) l' (psi rb)) rl' rr' k2 b (k2 lb ll' lr') r' = G (phiR (psi b) r' (psi lb)) ll' lr' To call this skeleton, you need to specify the types below.
Sample: v = reduce k1 k2 t v = tree_skeletons::reduce( k1, k2, psi, phiL, phiR, G, t );
|
|
Shift each left-child's value to its parent. Shiftl skeleton shift each left-child's value to its parent, that is, for each node this skeleton substitute the left-child's value for the node's value. The values of leaves are specified by the input. The value of root node will be dropped. Definition (in Haskell): shiftl :: a -> BTree a a -> BTree a a shiftl a (Leaf b) = Leaf a shiftl a (Node b l r) = Node (root l) (shiftl a l) (shiftl a r)
|
|
Shift each value to its children. Shiftp skeleton shift each value to its children, that is, for each node this skeleton substitute the value for children's value. The value of root node is specified by the input. The values of leaves will be dropped. Definition (in Haskell): shiftp :: a -> BTree a a -> BTree a a shiftp c (Leaf a) = Leaf c shiftp c (Node b l r) = Node c (shitp b l) (shift b r)
|
|
Shift each right-child's value to its parent. Shiftr skeleton shift each right-child's value to its parent, that is, for each node this skeleton substitute the right-child's value for the node's value. The values of leaves are specified by the input. The value of root node will be dropped. Definition (in Haskell): shiftr :: a -> BTree a a -> BTree a a shiftr a (Leaf b) = Leaf a shiftr a (Node b l r) = Node (root r) (shiftr a l) (shiftr a r)
|
|
Upwards accumulate skeleton with Function Objects. This skeleton computes on the tree in a bottom-up manner like reduce, and the difference is that this skeleton returns a tree of the same shape as input tree by leaving the intermediate result on every node. The meaning of functions and the conditions of additional functions for parallel implementation are the same as reduce skeleton. Definition (in Haskell): uAcc :: (a -> c) -> (a -> c -> c -> c) -> BTree a a -> BTree c c uAcc k1 k2 (Leaf a) = Leaf (k1 a) uAcc k1 k2 (Node b l r) = let l' = uAcc k1 k2 l r' = uAcc k1 k2 r in Node (k2 b (root l') (root r')) l' r'
Conditions: To call this skeleton, you need to specify the types below.
Sample: t2 = uAcc k1 k2 t1 t2 = tree_skeletons::uAcc( k1, k2, psi, phiL, phiR, G, t1 );
|
|
Zipwith skeleton with function object. This skeleton zips up two trees of the same shape into a tree by applying k1 for every pair of leaves and k2 for every pair of internal nodes. Definition (in Haskell): zipwith :: (a -> c -> e) -> (a -> c -> e) -> BTree a a -> BTree c c -> BTree e e zipwith k1 k2 (Leaf a) (Leaf a') = Leaf (k1 a a') zipwith k1 k2 (Node b l r) (Node b' l' r') = Node (k2 b b') (zipwith k1 k2 l l') (zipwith k1 k2 r r') To call this skeleton, you need to specify the types below.
Sample: t = zipwith k1 k2 at bt t = tree_skeletons::zipwith( k1, k2, at, bt );
|