Main Page | Namespace List | Class Hierarchy | Alphabetical List | Class List | Directories | File List | Namespace Members | Class Members | File Members | Related Pages

matrix_skeletons Class Reference

Collection of skeletons on matricies(two-dimensional arrays). More...

#include <matrix_skeletons.h>

List of all members.

Static Public Member Functions

static int setDistributionPolicy (int p)
 Set the distribution policy.
static int getDistributionPolicy ()
 Return the distribution policy.
static void calcDivision (int &r, int &c, const SKEL_MPI_INTRACOMM &com)
 Calculate divisions (r, c) according to the policy.
template<typename A, typename F>
static void map_i (const F &f, dist_matrix< A > *mat)
 The map skeleton (inplace).
template<typename B, typename A, typename F>
static void map (const F &f, const dist_matrix< A > *mat, dist_matrix< B > *dmb)
 The map skeleton.
template<typename A, typename F>
static dist_matrix< typename
F::result_type > * 
map (const F &f, const dist_matrix< A > *mat)
 The map skeleton(crates a new matrix).
template<typename C, typename A, typename B, typename F>
static void zipwith (const F &f, const dist_matrix< A > *dma, const dist_matrix< B > *dmb, dist_matrix< C > *dmc)
 The zipwith skeleton(crates a new matrix).
template<typename A, typename B, typename F>
static dist_matrix< typename
F::result_type > * 
zipwith (const F &f, const dist_matrix< A > *dma, const dist_matrix< B > *dmb)
 The zipwith skeleton(creates a new matrix).
template<typename A, typename B>
static dist_matrix< std::pair<
A, B > > * 
zip (const dist_matrix< A > *dma, const dist_matrix< B > *dmb)
 The zip skeleton which is a specialization of zipwith.
template<typename A, typename F, typename G>
static void reduceB (const F &oplus, const G &otimes, const dist_matrix< A > *mat, A *res)
 The reduce with broadcast.
template<typename A, typename F, typename G>
static A * reduceB (const F &oplus, const G &otimes, const dist_matrix< A > *mat)
 The reduce with broadcast.
template<typename A, typename F, typename G>
static void reduce (const F &oplus, const G &otimes, const dist_matrix< A > *mat, A *res)
 The reduce skeleton.
template<typename A, typename F, typename G>
static A * reduce (const F &oplus, const G &otimes, const dist_matrix< A > *mat)
 The reduce skeleton (create new value).
template<typename A, typename F, typename G>
static void reduceDC (const F &oplus, const G &otimes, const dist_matrix< A > *mat, A *res)
 The reduce skeleton(with divide and conquer local computation).
template<typename A, typename F, typename G>
static A * reduceDC (const F &oplus, const G &otimes, const dist_matrix< A > *mat)
 The reduce skeleton (create new value, with divide and conquer local computation).
template<typename A, typename F, typename G>
static void reduceDCN (const F &oplus, const G &otimes, const dist_matrix< A > *mat, A *res)
 The reduce skeleton(with divide and conquer local computation, nested parallelism).
template<typename A, typename F, typename G>
static A * reduceDCN (const F &oplus, const G &otimes, const dist_matrix< A > *mat)
 The reduce skeleton (create new value, with divide and conquer local computation, nested parallelism).
template<typename A, typename F, typename G>
static void reduceDCN2 (const F &oplus, const G &otimes, const dist_matrix< A > *mat, A *res)
 The reduce skeleton(with divide and conquer local computation, nested parallelism, broadcasting operands for each operator).
template<typename A, typename F, typename G>
static A * reduceDCN2 (const F &oplus, const G &otimes, const dist_matrix< A > *mat)
 The reduce skeleton (create new value, with divide and conquer local computation, nested parallelism, broadcasting operands for each operator).
template<typename A, typename F, typename G, typename H>
static void cata (const F &oplus, const G &otimes, const H &f, const dist_matrix< A > *mat, typename H::result_type *res)
 The cata skeleton.
template<typename A, typename F, typename G, typename H>
static H::result_type * cata (const F &oplus, const G &otimes, const H &f, const dist_matrix< A > *mat)
 The cata skeleton (create new value).
template<typename A, typename F, typename G, typename H>
static void cataDCN2 (const F &oplus, const G &otimes, const H &f, const dist_matrix< A > *mat, typename H::result_type *res)
 The cata skeleton(with divide and conquer local computation, nested parallelism, broadcasting operands for each operator).
template<typename A, typename F, typename G, typename H>
static H::result_type * cataDCN2 (const F &oplus, const G &otimes, const H &f, const dist_matrix< A > *mat)
 The cata skeleton (create new value, with divide and conquer local computation, nested parallelism, broadcasting operands for each operator).
template<typename A, typename F, typename G>
static void scan (const F &oplus, const G &otimes, const dist_matrix< A > *dma, dist_matrix< A > *dmb)
 The scan skeleton.
template<typename A, typename F, typename G>
static dist_matrix< A > * scan (const F &oplus, const G &otimes, const dist_matrix< A > *dma)
 The scan skeleton.
template<typename A, typename F, typename G>
static void scanr (const F &oplus, const G &otimes, const dist_matrix< A > *dma, dist_matrix< A > *dmb)
 The reverse-scan skeleton.
template<typename A, typename F, typename G>
static dist_matrix< A > * scanr (const F &oplus, const G &otimes, const dist_matrix< A > *dma)
 The reverse-scan skeleton.
template<typename A>
static dist_matrix< matrix<
A > > * 
all_rows (const dist_matrix< A > *mat)
 A specialization of allreduce_row: all_rows.
template<typename A>
static dist_matrix< matrix<
A > > * 
all_cols (const dist_matrix< A > *mat)
 A specialization of allreduce_col: all_cols.
template<typename A, typename F>
static dist_matrix< A > * allreduce_row (const F &otimes, const dist_matrix< A > *mat)
 A specialization of reduce: allreduce_row.
template<typename A, typename F>
static dist_matrix< A > * allreduce_col (const F &oplus, const dist_matrix< A > *mat)
 A specialization of reduce: allreduce_col.
template<typename A, typename OP2, typename OT2, typename P, typename OP, typename OT, typename Q>
static void acc (const OP2 &oplus2, const OT2 &otimes2, const P &p, const OP &oplus, const OT &otimes, const Q &q, const dist_matrix< A > *dma, typename P::result_type *res)
template<typename A, typename OP2, typename OT2, typename P, typename OP, typename OT, typename Q>
static P::result_type * acc (const OP2 &oplus2, const OT2 &otimes2, const P &p, const OP &oplus, const OT &otimes, const Q &q, const dist_matrix< A > *dma)
template<typename A, typename F, typename G>
static void scan2 (const F &oplus, const G &otimes, const dist_matrix< A > *dma, dist_matrix< A > *dmb)
template<typename A, typename F, typename G>
static dist_matrix< A > * scan2 (const F &oplus, const G &otimes, const dist_matrix< A > *dma)
template<typename A>
static void rotateRowsConst (int s, dist_matrix< A > *mat)
 Rotate row-blocks by s.
template<typename A, typename F>
static void rotateRows (const F &f, dist_matrix< A > *mat)
 Rotate row-blocks by f(col-position).
template<typename A>
static void rotateColsConst (int s, dist_matrix< A > *mat)
 Rotate column-blocks by s.
template<typename A, typename F>
static void rotateCols (const F &f, dist_matrix< A > *mat)
 Rotate column-blocks by f(row-position).

Static Public Attributes

static int distributionPolicy = matrix_skeletons::DPOLICY_RECTANGLE
 Policy of implicit distribution by constructors.
static const int DPOLICY_RECTANGLE = 0
 Distribute policy RECTANGLE. Using all processors to distribute the matrix. Distributed matrix can be seen as a (r, c) matrix of matrices. r*c = processors, where r is division in row-direction, and c is division in column-direction.
static const int DPOLICY_SQUARE = 1
 Distribute policy SQUARE. The matrix is distributed symmetrically in row- and column-direction. Distributed matrix can be seen as a (r, r) square matrix of matrices. r*r =< processors, where r is division in each-direction and (r+1) * (r+1) > processors.
static const int DPOLICY_ROW = 2
 Distribute policy ROW. The matrix is distributed in row-direction. Distributed matrix can be seen as a (r, 1) matrix (vector) of matrices. r = processors, where r is division in row-direction.
static const int DPOLICY_COLUMN = 3
 Distribute policy COLUMN. The matrix is distributed in column-direction. Distributed matrix can be seen as a (1, c) matrix (vector) of matrices. c = processors, where c is division in column-direction.

Classes

class  Mkpair
 A function object making a pair (fst, snd).


Detailed Description

Collection of skeletons on matricies(two-dimensional arrays).

This implementation is parallel, distributed.

Definition at line 70 of file matrix_skeletons.h.


Member Function Documentation

template<typename A, typename OP2, typename OT2, typename P, typename OP, typename OT, typename Q>
static P::result_type* matrix_skeletons::acc const OP2 &  oplus2,
const OT2 &  otimes2,
const P &  p,
const OP &  oplus,
const OT &  otimes,
const Q &  q,
const dist_matrix< A > *  dma
[static]
 

template<typename A, typename OP2, typename OT2, typename P, typename OP, typename OT, typename Q>
static void matrix_skeletons::acc const OP2 &  oplus2,
const OT2 &  otimes2,
const P &  p,
const OP &  oplus,
const OT &  otimes,
const Q &  q,
const dist_matrix< A > *  dma,
typename P::result_type *  res
[static]
 

accumulate skeleton prototypes

template<typename A>
static dist_matrix< matrix< A > >* matrix_skeletons::all_cols const dist_matrix< A > *  mat  )  [static]
 

A specialization of allreduce_col: all_cols.

Resulting matrix consists of columns of the matrix mat. i.e. each element in a col of the matrix is corresponding col of this matrix. Definition (in Haskell)

 allcols :: Matrix a -> Matrix (Matrix a)
 allcols = allreduce_col (Abv) . map Sing

Sample:
< Haskell code >

   m2 = allcols m1
< C++ code >
   m2 = matrix_skeletons::allcols( m1 );
Parameters:
mat a matrix.
Returns:
a matrix consisting of columns of the matrix mat.
See also:
matrix_skeletons::allreduce_col(const F &, const dist_matrix<A> *)

template<typename A>
static dist_matrix< matrix< A > >* matrix_skeletons::all_rows const dist_matrix< A > *  mat  )  [static]
 

A specialization of allreduce_row: all_rows.

Resulting matrix consists of rows of the matrix mat. i.e. each element in a row of the matrix is corresponding row of this matrix. Definition (in Haskell)

 allrows :: Matrix a -> Matrix (Matrix a)
 allrows = allreduce_row (Bsd) . map Sing

Sample:
< Haskell code >

   m2 = allrows m1
< C++ code >
   m2 = matrix_skeletons::allrows( m1 );
Parameters:
mat a matrix.
Returns:
a matrix consisting of rows of the matrix mat.
See also:
matrix_skeletons::allreduce_row(const F &, const dist_matrix<A> *)

template<typename A, typename F>
static dist_matrix< A >* matrix_skeletons::allreduce_col const F &  oplus,
const dist_matrix< A > *  mat
[static]
 

A specialization of reduce: allreduce_col.

This reduces the matrix in column-direction only and broadcasts the result in each column. So almost all elements are shadows of first row. Please be careful with modifing the elements.

Definition (in Haskell)

 allreduce_col :: (a -> a -> a) -> Matrix a -> Matrix a
 allreduce_col oplus = scanr (rr, ll) . scan (oplus, rr)
   where ll a b = a
         rr a b = b

Sample:
< Haskell code >

   m2 = allreduce_col (+) m1
< C++ code >
   m2 = matrix_skeletons::allreduce_col( Add(), m1 );
Parameters:
oplus a function taking two arguments x and y, returning result z, i.e. z = x oplus y. oplus should have the member void operator()(const A&, const A&, A*) const. The function object oplus should inherit skeleton::binary_function. oplus should be associative.
mat a matrix to be reduced.
Returns:
The resulting matrix in which the elements in a column have the same value, the result of reducing the column with oplus.
See also:
matrix_skeletons::reduce(const F &, const G &, const dist_matrix<A> *)

matrix_skeletons::scan(const F &, const G &, const dist_matrix<A> *)

matrix_skeletons::scanr(const F &, const G &, const dist_matrix<A> *)

m_skeletons::allreduce_col(const F &, const matrix<A> *)

template<typename A, typename F>
static dist_matrix< A >* matrix_skeletons::allreduce_row const F &  otimes,
const dist_matrix< A > *  mat
[static]
 

A specialization of reduce: allreduce_row.

This reduces the matrix in row-direction only and broadcasts the result in each row. So almost all elements are shadows of first column. Please be careful with modifing the elements.

Definition (in Haskell)

 allreduce_row :: (a -> a -> a) -> Matrix a -> Matrix a
 allreduce_row otimes = scanr (ll, rr) . scan (rr, otimes)
   where ll a b = a
         rr a b = b

Sample:
< Haskell code >

   m2 = allreduce_row (+) m1
< C++ code >
   m2 = matrix_skeletons::allreduce_row( Add(), m1 );
Parameters:
otimes a function taking two arguments x and y, returning result z, i.e. z = x otimes y. otimes should have the member void operator()(const A&, const A&, A*) const. The function object otimes should inherit skeleton::binary_function. otimes should be associative.
mat a matrix to be reduced.
Returns:
The resulting matrix in which the elements in a row have the same value, the result of reducing the row with otimes.
See also:
matrix_skeletons::reduce(const F &, const G &, const dist_matrix<A> *)

matrix_skeletons::scan(const F &, const G &, const dist_matrix<A> *)

matrix_skeletons::scanr(const F &, const G &, const dist_matrix<A> *)

m_skeletons::allreduce_row(const F &, const matrix<A> *)

void matrix_skeletons::calcDivision int &  r,
int &  c,
const SKEL_MPI_INTRACOMM &  com
[static]
 

Calculate divisions (r, c) according to the policy.

Parameters:
r row-division
c col-division
com the communicator

Definition at line 98 of file sketo.cpp.

References distributionPolicy, DPOLICY_COLUMN, DPOLICY_RECTANGLE, DPOLICY_ROW, DPOLICY_SQUARE, and SKEL_MPI_Comm_size.

template<typename A, typename F, typename G, typename H>
static H::result_type* matrix_skeletons::cata const F &  oplus,
const G &  otimes,
const H &  f,
const dist_matrix< A > *  mat
[static]
 

The cata skeleton (create new value).

This skeleton reduces the matrix into a value with two binary operators after applying a function to each element.

Definition (in Haskell)

 cata :: (a->a->a, a->a->a, b->a) -> Matrix b -> a
 cata (oplus, otimes, f) (Sing a)  = f a
 cata (oplus, otimes, f) (Abv x y) = oplus ( cata (oplus, otimes, f) x) ( cata (oplus, otimes, f) y)
 cata (oplus, otimes, f) (Bsd x y) = otimes ( cata (oplus, otimes, f) x) ( cata (oplus, otimes, f) y)
Two operators should have abiding property.

Sample:
< Haskell code >

   r = cata ((+), (+), square) m
< C++ code >
   r = matrix_skeletons::cata( Add(), Add(), Square(), m);

The matrices must be row-wise.

Parameters:
oplus a function taking two arguments x and y, returning result z, i.e. z = x oplus y, and must be abiding with otimes. oplus should have the member void operator()(const A&, const A&, A*) const. The function object oplus should inherit skeleton::binary_function. A sample of function object is as follows: (Addition)
 class Add : public skeleton::binary_function <int, int, int> {
 public:
     void operator()(const int &i, const int &j, int *r) const {
         *r = i + j;
     }
 };
oplus should be associative.
otimes a function taking two arguments x and y, returning result z, i.e. z = x otimes y, and must be abiding with oplus. The function otimes oplus should inherit skeleton::binary_function. otimes should be associative. Associative and commutative operator has abiding property with itself.
f a function taking A, and returning result in B f should have the member void operator()(const A&, B*) const. The function object f should inherit skeleton::unary_function. A sample of function object is as follows: (square root of the value. type of result is double and type of argument is int)
 class Square : public skeleton::unary_function <int, double> {
 public:
     void operator()(const int &i, double *r) const {
         *r = sqrt((double)i);
     }
 };
mat a matrix to which the reduce is applied.
Returns:
Resulting reduced value. User should free it.
See also:
m_skeletons::reduce(const F &, const G &, const matrix<A> *)

template<typename A, typename F, typename G, typename H>
static void matrix_skeletons::cata const F &  oplus,
const G &  otimes,
const H &  f,
const dist_matrix< A > *  mat,
typename H::result_type *  res
[static]
 

The cata skeleton.

This skeleton reduces the matrix into a value with two binary operators after applying a function to each element. The matrices must be row-wise.

Parameters:
oplus a function taking two arguments x and y, returning result z, i.e. z = x oplus y, and must be abiding with otimes. oplus should have the member void operator()(const A&, const A&, A*) const. The function object oplus should inherit skeleton::binary_function. A sample of function object is as follows: (Max)
 class Max : public skeleton::binary_function <int, int, int> {
 public:
     void operator()(const int &i, const int &j, int *r) const {
         *r = (i > j) ? i : j;
     }
 };
oplus should be associative.
otimes a function taking two arguments x and y, returning result z, i.e. z = x otimes y, and must be abiding with oplus. The function otimes oplus should inherit skeleton::binary_function. otimes should be associative. Associative and commutative operator has abiding property with itself.
f a function taking A, and returning result in B f should have the member void operator()(const A&, B*) const. The function object f should inherit skeleton::unary_function. A sample of function object is as follows: (square root of the value. type of result is double and type of argument is int)
 class Square : public skeleton::unary_function <int, double> {
 public:
     void operator()(const int &i, double *r) const {
         *r = sqrt((double)i);
     }
 };
mat a matrix to which the cata is applied.
res resulting reduced value.
See also:
matrix_skeletons::cata(const F &, const G &, const H &, const dist_matrix<A> *)

template<typename A, typename F, typename G, typename H>
static H::result_type* matrix_skeletons::cataDCN2 const F &  oplus,
const G &  otimes,
const H &  f,
const dist_matrix< A > *  mat
[static]
 

The cata skeleton (create new value, with divide and conquer local computation, nested parallelism, broadcasting operands for each operator).

This skeleton reduces the matrix into a value with two binary operators after applying a function to each element.

Definition (in Haskell)

 cata :: (a->a->a, a->a->a, b->a) -> Matrix b -> a
 cata (oplus, otimes, f) (Sing a)  = f a
 cata (oplus, otimes, f) (Abv x y) = oplus ( cata (oplus, otimes, f) x) ( cata (oplus, otimes, f) y)
 cata (oplus, otimes, f) (Bsd x y) = otimes ( cata (oplus, otimes, f) x) ( cata (oplus, otimes, f) y)
Two operators should have abiding property.

Sample:
< Haskell code >

   r = cata ((+), (+), square) m
< C++ code >
   r = matrix_skeletons::cata( Add(), Add(), Square(), m);

The matrices must be row-wise.

Parameters:
oplus a function taking two arguments x and y, returning result z, i.e. z = x oplus y, and must be abiding with otimes. oplus should have the member void operator()(const A&, const A&, A*) const. The function object oplus should inherit skeleton::binary_function. A sample of function object is as follows: (Addition)
 class Add : public skeleton::binary_function <int, int, int> {
 public:
     void operator()(const int &i, const int &j, int *r) const {
         *r = i + j;
     }
 };
oplus should be associative.
otimes a function taking two arguments x and y, returning result z, i.e. z = x otimes y, and must be abiding with oplus. The function otimes oplus should inherit skeleton::binary_function. otimes should be associative. Associative and commutative operator has abiding property with itself.
f a function taking A, and returning result in B f should have the member void operator()(const A&, B*) const. The function object f should inherit skeleton::unary_function. A sample of function object is as follows: (square root of the value. type of result is double and type of argument is int)
 class Square : public skeleton::unary_function <int, double> {
 public:
     void operator()(const int &i, double *r) const {
         *r = sqrt((double)i);
     }
 };
mat a matrix to which the reduce is applied.
Returns:
Resulting reduced value. User should free it.
See also:
m_skeletons::reduce(const F &, const G &, const matrix<A> *)

template<typename A, typename F, typename G, typename H>
static void matrix_skeletons::cataDCN2 const F &  oplus,
const G &  otimes,
const H &  f,
const dist_matrix< A > *  mat,
typename H::result_type *  res
[static]
 

The cata skeleton(with divide and conquer local computation, nested parallelism, broadcasting operands for each operator).

This skeleton reduces the matrix into a value with two binary operators after applying a function to each element. The matrices must be row-wise.

Parameters:
oplus a function taking two arguments x and y, returning result z, i.e. z = x oplus y, and must be abiding with otimes. oplus should have the member void operator()(const A&, const A&, A*) const. The function object oplus should inherit skeleton::binary_function. A sample of function object is as follows: (Max)
 class Max : public skeleton::binary_function <int, int, int> {
 public:
     void operator()(const int &i, const int &j, int *r) const {
         *r = (i > j) ? i : j;
     }
 };
oplus should be associative.
otimes a function taking two arguments x and y, returning result z, i.e. z = x otimes y, and must be abiding with oplus. The function otimes oplus should inherit skeleton::binary_function. otimes should be associative. Associative and commutative operator has abiding property with itself.
f a function taking A, and returning result in B f should have the member void operator()(const A&, B*) const. The function object f should inherit skeleton::unary_function. A sample of function object is as follows: (square root of the value. type of result is double and type of argument is int)
 class Square : public skeleton::unary_function <int, double> {
 public:
     void operator()(const int &i, double *r) const {
         *r = sqrt((double)i);
     }
 };
mat a matrix to which the cata is applied.
res resulting reduced value.
See also:
matrix_skeletons::cataDCN2(const F &, const G &, const H &, const dist_matrix<A> *)

int matrix_skeletons::getDistributionPolicy  )  [static]
 

Return the distribution policy.

Returns:
Current policy.
See also:
DPOLICY_RECTANGLE

DPOLICY_SQUARE

DPOLICY_ROW

DPOLICY_COLUMN

Definition at line 145 of file sketo.cpp.

References distributionPolicy.

template<typename A, typename F>
static dist_matrix<typename F::result_type>* matrix_skeletons::map const F &  f,
const dist_matrix< A > *  mat
[static]
 

The map skeleton(crates a new matrix).

This function applies the function to each element of the matrix.

Definition (in Haskell)

 map :: (a -> b) -> Matrix a -> Matrix b
 map f (Sing a)  = Sing (f a)
 map f (Abv x y) = Abv (map f x) (map f y)
 map f (Bsd x y) = Bsd (map f x) (map f y)

Sample:
< Haskell code >

   m2 = map f m1
< C++ code >
   m2 = matrix_skeletons::map( f, m1 );
Parameters:
f a function taking A, and returning result in B f should have the member void operator()(const A&, B*) const. The function object f should inherit skeleton::unary_function. A sample of function object is as follows: (square root of the value. type of result is double and type of argument is int)
 class Square : public skeleton::unary_function <int, double> {
 public:
     void operator()(const int &i, double *r) const {
         *r = sqrt((double)i);
     }
 };
mat matrix to which the skeleton is applied.
Returns:
A matrix to which the result is stored.
See also:
m_skeletons::map(const F&, const matrix <A>*)

template<typename B, typename A, typename F>
static void matrix_skeletons::map const F &  f,
const dist_matrix< A > *  mat,
dist_matrix< B > *  dmb
[static]
 

The map skeleton.

This function applies the function to each element of the matrix.

Parameters:
f a function taking A, and returning result in B f should have the member void operator()(const A&, B*) const. The function object f should inherit skeleton::unary_function. A sample of function object is as follows: (square root of the value. type of result is double and type of argument is int)
 class Square : public skeleton::unary_function <int, double> {
 public:
     void operator()(const int &i, double *r) const {
         *r = sqrt((double)i);
     }
 };
mat matrix to which the skeleton is applied.
dmb matrix to which the result is stored.
See also:
matrix_skeletons::map(const F&, const dist_matrix <A>*)

template<typename A, typename F>
static void matrix_skeletons::map_i const F &  f,
dist_matrix< A > *  mat
[static]
 

The map skeleton (inplace).

This function applies the function to each element of the matrix.

Parameters:
f a function object taking A, and overwriting the result on the argument. f should have the member void operator()(A*) const. A sample of function object is as follows: (the value *r is replaced by *r*2)
 class Double {
 public:
     void operator()(int *r) const {
         *r = *r*2;
     }
 };
mat matrix to which the skeleton is applied.
See also:
matrix_skeletons::map(const F&, const dist_matrix <A>*)

template<typename A, typename F, typename G>
static A* matrix_skeletons::reduce const F &  oplus,
const G &  otimes,
const dist_matrix< A > *  mat
[static]
 

The reduce skeleton (create new value).

This skeleton reduces the matrix into a value with two binary operators.

Definition (in Haskell)

 reduce :: (a->a->a, a->a->a) -> Matrix a -> a
 reduce (oplus, otimes) (Sing a)  = a
 reduce (oplus, otimes) (Abv x y) = oplus ( reduce (oplus, otimes) x) ( reduce (oplus, otimes) y)
 reduce (oplus, otimes) (Bsd x y) = otimes ( reduce (oplus, otimes) x) ( reduce (oplus, otimes) y)
Two operators should have abiding property.

Sample:
< Haskell code >

   r = reduce ((+), (+)) m
< C++ code >
   r = matrix_skeletons::reduce( Add(), Add(), m);

The matrices must be row-wise.

Parameters:
oplus a function taking two arguments x and y, returning result z, i.e. z = x oplus y, and must be abiding with otimes. oplus should have the member void operator()(const A&, const A&, A*) const. The function object oplus should inherit skeleton::binary_function. A sample of function object is as follows: (Addition)
 class Add : public skeleton::binary_function <int, int, int> {
 public:
     void operator()(const int &i, const int &j, int *r) const {
         *r = i + j;
     }
 };
oplus should be associative.
otimes a function taking two arguments x and y, returning result z, i.e. z = x otimes y, and must be abiding with oplus. The function otimes oplus should inherit skeleton::binary_function. otimes should be associative. Associative and commutative operator has abiding property with itself.
mat a matrix to which the reduce is applied.
Returns:
Resulting reduced value. User should free it.
See also:
m_skeletons::reduce(const F &, const G &, const matrix<A> *)

template<typename A, typename F, typename G>
static void matrix_skeletons::reduce const F &  oplus,
const G &  otimes,
const dist_matrix< A > *  mat,
A *  res
[static]
 

The reduce skeleton.

This skeleton reduces the matrix into a value with two binary operators. The matrices must be row-wise.

Parameters:
oplus a function taking two arguments x and y, returning result z, i.e. z = x oplus y, and must be abiding with otimes. oplus should have the member void operator()(const A&, const A&, A*) const. The function object oplus should inherit skeleton::binary_function. A sample of function object is as follows: (Max)
 class Max : public skeleton::binary_function <int, int, int> {
 public:
     void operator()(const int &i, const int &j, int *r) const {
         *r = (i > j) ? i : j;
     }
 };
oplus should be associative.
otimes a function taking two arguments x and y, returning result z, i.e. z = x otimes y, and must be abiding with oplus. The function otimes oplus should inherit skeleton::binary_function. otimes should be associative. Associative and commutative operator has abiding property with itself.
mat a matrix to which the reduce is applied.
res resulting reduced value.
See also:
matrix_skeletons::reduce(const F &, const G &, const dist_matrix<A> *)

template<typename A, typename F, typename G>
static A* matrix_skeletons::reduceB const F &  oplus,
const G &  otimes,
const dist_matrix< A > *  mat
[static]
 

The reduce with broadcast.

Broadcasting after reduction.

Parameters:
oplus a function taking two arguments x and y, returning result z, i.e. z = x oplus y, and must be abiding with otimes. oplus should have the member void operator()(const A&, const A&, A*) const. The function object oplus should inherit skeleton::binary_function. A sample of function object is as follows: (Max)
 class Max : public skeleton::binary_function <int, int, int> {
 public:
     void operator()(const int &i, const int &j, int *r) const {
         *r = (i > j) ? i : j;
     }
 };
oplus should be associative.
otimes a function taking two arguments x and y, returning result z, i.e. z = x otimes y, and must be abiding with oplus. The function otimes oplus should inherit skeleton::binary_function. otimes should be associative. Associative and commutative operator has abiding property with itself.
mat a matrix to which the reduce is applied.
Returns:
Resulting reduced value.
See also:
matrix_skeletons::reduce(const F &, const G &, const dist_matrix<A> *)

dist_matrix::bcast(B &, const dist_matrix< A > *)

template<typename A, typename F, typename G>
static void matrix_skeletons::reduceB const F &  oplus,
const G &  otimes,
const dist_matrix< A > *  mat,
A *  res
[static]
 

The reduce with broadcast.

Broadcasting after reduction.

Parameters:
oplus a function taking two arguments x and y, returning result z, i.e. z = x oplus y, and must be abiding with otimes. oplus should have the member void operator()(const A&, const A&, *A) const. The function object oplus should inherit skeleton::binary_function. A sample of function object is as follows: (Max)
 class Max : public skeleton::binary_function <int, int, int> {
 public:
     void operator()(const int &i, const int &j, int *r) const {
         *r = (i > j) ? i : j;
     }
 };
oplus should be associative.
otimes a function taking two arguments x and y, returning result z, i.e. z = x otimes y, and must be abiding with oplus. The function otimes oplus should inherit skeleton::binary_function. otimes should be associative. Associative and commutative operator has abiding property with itself.
mat a matrix to which the reduce is applied.
res resulting reduced value.
See also:
matrix_skeletons::reduceB(const F &, const G &, const dist_matrix<A> *)

matrix_skeletons::reduce(const F &, const G &, const dist_matrix<A> *)

dist_matrix::bcast(B &, const dist_matrix< A > *)

template<typename A, typename F, typename G>
static A* matrix_skeletons::reduceDC const F &  oplus,
const G &  otimes,
const dist_matrix< A > *  mat
[static]
 

The reduce skeleton (create new value, with divide and conquer local computation).

This skeleton reduces the matrix into a value with two binary operators.

Definition (in Haskell)

 reduce :: (a->a->a, a->a->a) -> Matrix a -> a
 reduce (oplus, otimes) (Sing a)  = a
 reduce (oplus, otimes) (Abv x y) = oplus ( reduce (oplus, otimes) x) ( reduce (oplus, otimes) y)
 reduce (oplus, otimes) (Bsd x y) = otimes ( reduce (oplus, otimes) x) ( reduce (oplus, otimes) y)
Two operators should have abiding property.

Sample:
< Haskell code >

   r = reduce ((+), (+)) m
< C++ code >
   r = matrix_skeletons::reduce( Add(), Add(), m);

The matrices must be row-wise.

Parameters:
oplus a function taking two arguments x and y, returning result z, i.e. z = x oplus y, and must be abiding with otimes. oplus should have the member void operator()(const A&, const A&, A*) const. The function object oplus should inherit skeleton::binary_function. A sample of function object is as follows: (Addition)
 class Add : public skeleton::binary_function <int, int, int> {
 public:
     void operator()(const int &i, const int &j, int *r) const {
         *r = i + j;
     }
 };
oplus should be associative.
otimes a function taking two arguments x and y, returning result z, i.e. z = x otimes y, and must be abiding with oplus. The function otimes oplus should inherit skeleton::binary_function. otimes should be associative. Associative and commutative operator has abiding property with itself.
mat a matrix to which the reduce is applied.
Returns:
Resulting reduced value. User should free it.
See also:
m_skeletons::reduce(const F &, const G &, const matrix<A> *)

template<typename A, typename F, typename G>
static void matrix_skeletons::reduceDC const F &  oplus,
const G &  otimes,
const dist_matrix< A > *  mat,
A *  res
[static]
 

The reduce skeleton(with divide and conquer local computation).

This skeleton reduces the matrix into a value with two binary operators. The matrices must be row-wise.

Parameters:
oplus a function taking two arguments x and y, returning result z, i.e. z = x oplus y, and must be abiding with otimes. oplus should have the member void operator()(const A&, const A&, A*) const. The function object oplus should inherit skeleton::binary_function. A sample of function object is as follows: (Max)
 class Max : public skeleton::binary_function <int, int, int> {
 public:
     void operator()(const int &i, const int &j, int *r) const {
         *r = (i > j) ? i : j;
     }
 };
oplus should be associative.
otimes a function taking two arguments x and y, returning result z, i.e. z = x otimes y, and must be abiding with oplus. The function otimes oplus should inherit skeleton::binary_function. otimes should be associative. Associative and commutative operator has abiding property with itself.
mat a matrix to which the reduce is applied.
res resulting reduced value.
See also:
matrix_skeletons::reduce(const F &, const G &, const dist_matrix<A> *)

template<typename A, typename F, typename G>
static A* matrix_skeletons::reduceDCN const F &  oplus,
const G &  otimes,
const dist_matrix< A > *  mat
[static]
 

The reduce skeleton (create new value, with divide and conquer local computation, nested parallelism).

This skeleton reduces the matrix into a value with two binary operators.

Definition (in Haskell)

 reduce :: (a->a->a, a->a->a) -> Matrix a -> a
 reduce (oplus, otimes) (Sing a)  = a
 reduce (oplus, otimes) (Abv x y) = oplus ( reduce (oplus, otimes) x) ( reduce (oplus, otimes) y)
 reduce (oplus, otimes) (Bsd x y) = otimes ( reduce (oplus, otimes) x) ( reduce (oplus, otimes) y)
Two operators should have abiding property.

Sample:
< Haskell code >

   r = reduce ((+), (+)) m
< C++ code >
   r = matrix_skeletons::reduce( Add(), Add(), m);

The matrices must be row-wise.

Parameters:
oplus a function taking two arguments x and y, returning result z, i.e. z = x oplus y, and must be abiding with otimes. oplus should have the member void operator()(const A&, const A&, A*) const. The function object oplus should inherit skeleton::binary_function. A sample of function object is as follows: (Addition)
 class Add : public skeleton::binary_function <int, int, int> {
 public:
     void operator()(const int &i, const int &j, int *r) const {
         *r = i + j;
     }
 };
oplus should be associative.
otimes a function taking two arguments x and y, returning result z, i.e. z = x otimes y, and must be abiding with oplus. The function otimes oplus should inherit skeleton::binary_function. otimes should be associative. Associative and commutative operator has abiding property with itself.
mat a matrix to which the reduce is applied.
Returns:
Resulting reduced value. User should free it.
See also:
m_skeletons::reduce(const F &, const G &, const matrix<A> *)

template<typename A, typename F, typename G>
static void matrix_skeletons::reduceDCN const F &  oplus,
const G &  otimes,
const dist_matrix< A > *  mat,
A *  res
[static]
 

The reduce skeleton(with divide and conquer local computation, nested parallelism).

This skeleton reduces the matrix into a value with two binary operators. The matrices must be row-wise.

Parameters:
oplus a function taking two arguments x and y, returning result z, i.e. z = x oplus y, and must be abiding with otimes. oplus should have the member void operator()(const A&, const A&, A*) const. The function object oplus should inherit skeleton::binary_function. A sample of function object is as follows: (Max)
 class Max : public skeleton::binary_function <int, int, int> {
 public:
     void operator()(const int &i, const int &j, int *r) const {
         *r = (i > j) ? i : j;
     }
 };
oplus should be associative.
otimes a function taking two arguments x and y, returning result z, i.e. z = x otimes y, and must be abiding with oplus. The function otimes oplus should inherit skeleton::binary_function. otimes should be associative. Associative and commutative operator has abiding property with itself.
mat a matrix to which the reduce is applied.
res resulting reduced value.
See also:
matrix_skeletons::reduce(const F &, const G &, const dist_matrix<A> *)

template<typename A, typename F, typename G>
static A* matrix_skeletons::reduceDCN2 const F &  oplus,
const G &  otimes,
const dist_matrix< A > *  mat
[static]
 

The reduce skeleton (create new value, with divide and conquer local computation, nested parallelism, broadcasting operands for each operator).

This skeleton reduces the matrix into a value with two binary operators.

Definition (in Haskell)

 reduce :: (a->a->a, a->a->a) -> Matrix a -> a
 reduce (oplus, otimes) (Sing a)  = a
 reduce (oplus, otimes) (Abv x y) = oplus ( reduce (oplus, otimes) x) ( reduce (oplus, otimes) y)
 reduce (oplus, otimes) (Bsd x y) = otimes ( reduce (oplus, otimes) x) ( reduce (oplus, otimes) y)
Two operators should have abiding property.

Sample:
< Haskell code >

   r = reduce ((+), (+)) m
< C++ code >
   r = matrix_skeletons::reduce( Add(), Add(), m);

The matrices must be row-wise.

Parameters:
oplus a function taking two arguments x and y, returning result z, i.e. z = x oplus y, and must be abiding with otimes. oplus should have the member void operator()(const A&, const A&, A*) const. The function object oplus should inherit skeleton::binary_function. A sample of function object is as follows: (Addition)
 class Add : public skeleton::binary_function <int, int, int> {
 public:
     void operator()(const int &i, const int &j, int *r) const {
         *r = i + j;
     }
 };
oplus should be associative.
otimes a function taking two arguments x and y, returning result z, i.e. z = x otimes y, and must be abiding with oplus. The function otimes oplus should inherit skeleton::binary_function. otimes should be associative. Associative and commutative operator has abiding property with itself.
mat a matrix to which the reduce is applied.
Returns:
Resulting reduced value. User should free it.
See also:
m_skeletons::reduce(const F &, const G &, const matrix<A> *)

template<typename A, typename F, typename G>
static void matrix_skeletons::reduceDCN2 const F &  oplus,
const G &  otimes,
const dist_matrix< A > *  mat,
A *  res
[static]
 

The reduce skeleton(with divide and conquer local computation, nested parallelism, broadcasting operands for each operator).

This skeleton reduces the matrix into a value with two binary operators. The matrices must be row-wise.

Parameters:
oplus a function taking two arguments x and y, returning result z, i.e. z = x oplus y, and must be abiding with otimes. oplus should have the member void operator()(const A&, const A&, A*) const. The function object oplus should inherit skeleton::binary_function. A sample of function object is as follows: (Max)
 class Max : public skeleton::binary_function <int, int, int> {
 public:
     void operator()(const int &i, const int &j, int *r) const {
         *r = (i > j) ? i : j;
     }
 };
oplus should be associative.
otimes a function taking two arguments x and y, returning result z, i.e. z = x otimes y, and must be abiding with oplus. The function otimes oplus should inherit skeleton::binary_function. otimes should be associative. Associative and commutative operator has abiding property with itself.
mat a matrix to which the reduce is applied.
res resulting reduced value.
See also:
matrix_skeletons::reduce(const F &, const G &, const dist_matrix<A> *)

template<typename A, typename F>
static void matrix_skeletons::rotateCols const F &  f,
dist_matrix< A > *  mat
[static]
 

Rotate column-blocks by f(row-position).

Parameters:
f a function object taking row position, returning shift-value f should have int operator()(int a) const. A sample of function object is as follows: (i-th col is shifted by i to the bottom)
 class ShiftLinear {
 public:
     int operator()(int i) const {
         return i;
     }
 };
mat a dist_matrix to which the skeleton is applied.

template<typename A>
static void matrix_skeletons::rotateColsConst int  s,
dist_matrix< A > *  mat
[static]
 

Rotate column-blocks by s.

Parameters:
s shift.
mat a dist_matrix to which the skeleton is applied.

template<typename A, typename F>
static void matrix_skeletons::rotateRows const F &  f,
dist_matrix< A > *  mat
[static]
 

Rotate row-blocks by f(col-position).

Parameters:
f a function object taking column position, returning shift-value f should have int operator()(int a) const. A sample of function object is as follows: (i-th row is shifted by i to the left)
 class ShiftLinear {
 public:
     int operator()(int i) const {
         return i;
     }
 };
mat a dist_matrix to which the skeleton is applied.

template<typename A>
static void matrix_skeletons::rotateRowsConst int  s,
dist_matrix< A > *  mat
[static]
 

Rotate row-blocks by s.

Parameters:
s shift.
mat a dist_matrix to which the skeleton is applied.

template<typename A, typename F, typename G>
static dist_matrix<A>* matrix_skeletons::scan const F &  oplus,
const G &  otimes,
const dist_matrix< A > *  dma
[static]
 

The scan skeleton.

This skeleton stores every process of reduction of a matrix into a value with two binary operators. The matrices must be row-wise.

Definition (in Haskell)

 scan :: (a->a->a, a->a->a) -> Matrix a -> Matrix a
 scan (oplus, otimes) (Sing a) = (Sing a)
 scan (oplus, otimes) (Abv x y) = oplus' ( scan (oplus, otimes) x) ( scan (oplus, otimes) y)
     where oplus' sx sy = Abv sx sy'
         where sy' = mapr (zipwith oplus (bottom sx)) sy
 scan (oplus, otimes) (Bsd x y) = otimes' ( scan (oplus, otimes) x) ( scan (oplus, otimes) y)
     where otimes' sx sy = Bsd sx sy'
         where sy' = mapc (zipwith otimes (right sx)) sy
Two operators should have abiding property.

Sample:
< Haskell code >

   m2 = scan ((+), (+)) m1
< C++ code >
   m2 = matrix_skeletons::scan( Add(), Add(), m1);
Parameters:
oplus a function taking two arguments x and y, returning result z, i.e. z = x oplus y, and must be abiding with otimes. oplus should have the member void operator()(const A&, const A&, A*) const. The function object oplus should inherit skeleton::binary_function. A sample of function object is as follows: (Addition)
 class Add : public skeleton::binary_function <int, int, int> {
 public:
     void operator()(const int &i, const int &j, int *r) const {
         *r = i+j;
     }
 };
oplus should be associative.
otimes a function taking two arguments x and y, returning result z, i.e. z = x otimes y, and must be abiding with oplus. The function otimes oplus should inherit skeleton::binary_function. otimes should be associative. Associative and commutative operator has abiding property with itself.
dma a matrix to which the reduce is applied.
Returns:
Resulting matrix of all reduction values. User should free it.
See also:
matrix_skeletons::reduce(const F &, const G &, const dist_matrix<A> *)

matrix_skeletons::zipwith(const F &, const dist_matrix<A>*, const dist_matrix<B>*)

m_skeletons::scan(const F &, const G &, const matrix<A> *)

m_skeletons::right(const matrix<A> *)

m_skeletons::bottom(const matrix<A> *)

m_skeletons::mapr(const F &, const matrix<A> *)

m_skeletons::mapc(const F &, const matrix<A> *)

template<typename A, typename F, typename G>
static void matrix_skeletons::scan const F &  oplus,
const G &  otimes,
const dist_matrix< A > *  dma,
dist_matrix< A > *  dmb
[static]
 

The scan skeleton.

This skeleton stores every process of reduction of a matrix into a value with two binary operators. The matrices must be row-wise.

Parameters:
oplus a function taking two arguments x and y, returning result z, i.e. z = x oplus y, and must be abiding with otimes. oplus should have the member void operator()(const A&, const A&, A*) const. The function object oplus should inherit skeleton::binary_function. A sample of function object is as follows: (Max)
 class Max : public skeleton::binary_function <int, int, int> {
 public:
     void operator()(const int &i, const int &j, int *r) const {
         *r = (i > j) ? i : j;
     }
 };
oplus should be associative.
otimes a function taking two arguments x and y, returning result z, i.e. z = x otimes y, and must be abiding with oplus. The function otimes oplus should inherit skeleton::binary_function. otimes should be associative. Associative and commutative operator has abiding property with itself.
dma a matrix to which the reduce is applied.
dmb resulting matrix of all reduction values.
See also:
matrix_skeletons::scan(const F &, const G &, const dist_matrix<A> *)

template<typename A, typename F, typename G>
static dist_matrix<A>* matrix_skeletons::scan2 const F &  oplus,
const G &  otimes,
const dist_matrix< A > *  dma
[static]
 

template<typename A, typename F, typename G>
static void matrix_skeletons::scan2 const F &  oplus,
const G &  otimes,
const dist_matrix< A > *  dma,
dist_matrix< A > *  dmb
[static]
 

template<typename A, typename F, typename G>
static dist_matrix<A>* matrix_skeletons::scanr const F &  oplus,
const G &  otimes,
const dist_matrix< A > *  dma
[static]
 

The reverse-scan skeleton.

This skeleton stores every process of reverse reduction of a matrix into a value with two binary operators. The matrices must be row-wise.

Definition (in Haskell)

 scanr :: (a->a->a, a->a->a) -> Matrix a -> Matrix a
 scanr (oplus, otimes) = rev . scan (binrev oplus, binrev otimes) . rev
    where 
    rev = reduce (binrev Abv, binrev Bsd) . map Sing
    binrev f a b = f b a
Two operators should have abiding property.

Sample:
< Haskell code >

   m2 = scanr ((+), (+)) m1
< C++ code >
   m2 = matrix_skeletons::scanr( Add(), Add(), m1);
Parameters:
oplus a function taking two arguments x and y, returning result z, i.e. z = x oplus y, and must be abiding with otimes. oplus should have the member void operator()(const A&, const A&, A*) const. The function object oplus should inherit skeleton::binary_function. A sample of function object is as follows: (Addition)
 class Add : public skeleton::binary_function <int, int, int> {
 public:
     void operator()(const int &i, const int &j, int *r) const {
         *r = i+j;
     }
 };
oplus should be associative.
otimes a function taking two arguments x and y, returning result z, i.e. z = x otimes y, and must be abiding with oplus. The function otimes oplus should inherit skeleton::binary_function. otimes should be associative. Associative and commutative operator has abiding property with itself.
dma a matrix to which the reduce is applied.
Returns:
Resulting matrix of all reduction values. User should free it.
See also:
matrix_skeletons::scan(const F &, const G &, const dist_matrix<A> *)

matrix_skeletons::reduce(const F &, const G &, const dist_matrix<A> *)

matrix_skeletons::map(const F &, const dist_matrix<A> *)

m_skeletons::scanr(const F &, const G &, const matrix<A> *)

template<typename A, typename F, typename G>
static void matrix_skeletons::scanr const F &  oplus,
const G &  otimes,
const dist_matrix< A > *  dma,
dist_matrix< A > *  dmb
[static]
 

The reverse-scan skeleton.

This skeleton stores every process of reverse reduction of a matrix into a value with two binary operators. The matrices must be row-wise.

Parameters:
oplus a function taking two arguments x and y, returning result z, i.e. z = x oplus y, and must be abiding with otimes. oplus should have the member void operator()(const A&, const A&, A*) const. The function object oplus should inherit skeleton::binary_function. A sample of function object is as follows: (Addition)
 class Add : public skeleton::binary_function <int, int, int> {
 public:
     void operator()(const int &i, const int &j, int *r) const {
         *r = i+j;
     }
 };
oplus should be associative.
otimes a function taking two arguments x and y, returning result z, i.e. z = x otimes y, and must be abiding with oplus. The function otimes oplus should inherit skeleton::binary_function. otimes should be associative. Associative and commutative operator has abiding property with itself.
dma a matrix to which the reduce is applied.
dmb resulting matrix of all reduction values. User should free it.
See also:
matrix_skeletons::scanr(const F &, const G &, const dist_matrix<A> *)

int matrix_skeletons::setDistributionPolicy int  p  )  [static]
 

Set the distribution policy.

Parameters:
p new policy.
Returns:
Old policy.
See also:
DPOLICY_RECTANGLE

DPOLICY_SQUARE

DPOLICY_ROW

DPOLICY_COLUMN

Definition at line 137 of file sketo.cpp.

References distributionPolicy.

template<typename A, typename B>
static dist_matrix< std::pair<A,B> >* matrix_skeletons::zip const dist_matrix< A > *  dma,
const dist_matrix< B > *  dmb
[static]
 

The zip skeleton which is a specialization of zipwith.

Definition (in Haskell)

 zip :: (Matrix a, Matrix b) -> Matrix (a, b)
 zip (u, v) = zipwith (\ x y -> (x, y)) u v
Parameters:
dma matrix to be zipped with.
dmb matrix to be zipped with
Returns:
A matrix consisting of pairs of corresponding elements of the matrices.
See also:
matrix_skeletons::zipwith(const F &, const dist_matrix<A>*, const dist_matrix<B>*)

m_skeletons::zip(const matrix<A>*, const matrix<B>*)

template<typename A, typename B, typename F>
static dist_matrix<typename F::result_type>* matrix_skeletons::zipwith const F &  f,
const dist_matrix< A > *  dma,
const dist_matrix< B > *  dmb
[static]
 

The zipwith skeleton(creates a new matrix).

This function applies the function to the pair of corresponding elements of the matrices.

Definition (in Haskell)

 zipwith :: (a->b->c) -> Matrix a -> Matrix b -> Matrix c
 zipwith f (Sing a) (Sing b)   = Sing (f a b)
 zipwith f (Abv x y) (Abv u v) = Abv (zipwith f x u) (zipwith f y v)
 zipwith f (Bsd x y) (Bsd u v) = Bsd (zipwith f x u) (zipwith f y v)

Sample:
< Haskell code >

   m3 = zipwith f m1 m2
< C++ code >
   m3 = matrix_skeletons::zipwith( f, m1, m2 );
Parameters:
f a function taking A and B, writing result into C f should have the member void operator()(const A*, const B*, C*) const. The function object f should inherit skeleton::binary_function. A sample of function object is as follows: (ratio of two arguments)
 class Ratio : public skeleton::binary_function <int, int, double> {
 public:
     void operator()(const int &i, const int &j, double *r) const {
         *r = i / (double)j;
     }
 };
dma matrix to be zipped with.
dmb matrix to be zipped with.
Returns:
A matrix to which the result is stored.
See also:
m_skeletons::zipwith(const F &, const matrix<A>*, const matrix<B>*)

template<typename C, typename A, typename B, typename F>
static void matrix_skeletons::zipwith const F &  f,
const dist_matrix< A > *  dma,
const dist_matrix< B > *  dmb,
dist_matrix< C > *  dmc
[static]
 

The zipwith skeleton(crates a new matrix).

This function applies the function to the pair of corresponding elements of the matrices.

Parameters:
f a function taking A and B, writing result into C f should have the member void operator()(const A&, const B&, C*) const. The function object f should inherit skeleton::binary_function. A sample of function object is as follows: (ratio of two arguments)
 class Ratio : public skeleton::binary_function <int, int, double> {
 public:
     void operator()(const int &i, const int &j, double *r) const {
         *r = i / (double)j;
     }
 };
dma matrix to be zipped with.
dmb matrix to be zipped with.
dmc matrix to which result is stored
See also:
matrix_skeletons::zipwith(const F &, const dist_matrix<A>*, const dist_matrix<B>*)


Member Data Documentation

int matrix_skeletons::distributionPolicy = matrix_skeletons::DPOLICY_RECTANGLE [static]
 

Policy of implicit distribution by constructors.

This policy is used when user uses constructors without specifying distribution (the number of division of the matrix) explicitly. Default policy is DPOLICY_RECTANGLE.

Todo:
This variable should be a member of matrix_skeletons...

Definition at line 84 of file matrix_skeletons.h.

Referenced by calcDivision(), getDistributionPolicy(), and setDistributionPolicy().

const int matrix_skeletons::DPOLICY_COLUMN = 3 [static]
 

Distribute policy COLUMN. The matrix is distributed in column-direction. Distributed matrix can be seen as a (1, c) matrix (vector) of matrices. c = processors, where c is division in column-direction.

Definition at line 118 of file matrix_skeletons.h.

Referenced by calcDivision().

const int matrix_skeletons::DPOLICY_RECTANGLE = 0 [static]
 

Distribute policy RECTANGLE. Using all processors to distribute the matrix. Distributed matrix can be seen as a (r, c) matrix of matrices. r*c = processors, where r is division in row-direction, and c is division in column-direction.

Definition at line 93 of file matrix_skeletons.h.

Referenced by calcDivision().

const int matrix_skeletons::DPOLICY_ROW = 2 [static]
 

Distribute policy ROW. The matrix is distributed in row-direction. Distributed matrix can be seen as a (r, 1) matrix (vector) of matrices. r = processors, where r is division in row-direction.

Definition at line 110 of file matrix_skeletons.h.

Referenced by calcDivision().

const int matrix_skeletons::DPOLICY_SQUARE = 1 [static]
 

Distribute policy SQUARE. The matrix is distributed symmetrically in row- and column-direction. Distributed matrix can be seen as a (r, r) square matrix of matrices. r*r =< processors, where r is division in each-direction and (r+1) * (r+1) > processors.

Definition at line 102 of file matrix_skeletons.h.

Referenced by calcDivision().


The documentation for this class was generated from the following files:
Generated on Wed Jan 18 22:21:06 2006 for SkeTo -- Skeleton Library in Tokyo by  doxygen 1.4.4