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Abstract

SkeTo (Skeletons in Tokyo) is a constructive parallel skeleton library
written in C4++ with MPI intended for distributed environments such as PC
clusters. SkeTo provides data parallel skeletons for lists, matrices, and trees.
(The version 1.10 includes parallel skeletons for lists and matrices. Other
parallel skeletons will be included in the later versions.) SkeTo enables users
to write parallel programs as if they were sequential, since the distribution,
gathering, and parallel computation of data are concealed within construc-
tors of data types or definitions of parallel skeletons.

This document consists of three parts. The first part provides quick-start
tutorials. After showing how to install the SkeTo library, we demonstrate
programming with the SkeTo library through several examples. The second
part shows some advanced topics on use of the SkeTo library. The third part
is the reference manual.
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Chapter 1

Quick Start

SkeTo (Skeletons in Tokyo) is a constructive parallel skeleton library written in C++ with
MPI intended for distributed environments such as PC clusters. SkeTo provides data parallel
skeletons for lists (distributed one-dimensional arrays), matrices (distributed two-dimensional
arrays), and trees (distributed binary trees)!. SkeTo enables users to write parallel programs as
if they were sequential, since the distribution, gathering, and parallel computation of data are
concealed within constructors of data types or definitions of parallel skeletons. SkeTo is named
after the Japanese word Suketto, whose meaning is helper or supporter, in the hope that SkeTo
library will help programmers easily develop efficient parallel programs.

The SkeTo library is the results of the research in the “SkeTo Project”, which is a research
project working on skeletal parallelism (or algorithmic skeletons). The members of the SkeTo
project are from The University of Tokyo, The University of Electro-Communications in Japan,
National Institute of Informatics, and Kochi University of Technology. The SkeTo project has
been partially supported by: HPC Systems Inc., PRESTO program by Japan Science and Tech-
nology Agency (JST), Grant-in-Aid for Scientific Research (B), No. 17300005, Japan Society for
the Promotion of Science, and Grant-in-Aid for Scientific Research (C), No. 20500029, Japan
Society for the Promotion of Science.

1.1 Installing the SkeTo Library

You can install the SkeTo library by the following four steps.
1. Install a C++ compiler (e.g., GCC) and an MPI library (e.g., mpich).

2. Download an archive of the source files (SkeTo-x.xx.tar.gz or SkeTo-x.xx.zip) from the
website of the SkeTo project (http://www.ipl.t.u-tokyo.ac.jp/sketo/download.html)|]
and extract the files.

3. Configure the package for your system by the following command.
./configure
You can specify the place to which the SkeTo library is installed by --prefix option.

You can also specify the C4++ compiler and the MPI library you want to use. For details,
please see the help by “./configure --help”.

!The version 1.0 only include parallel skeletons for lists, but other parallel skeletons will be included in the
later versions.



4. Compile the package and install the files.
make && make install

The library file (1ib/1libsketo.a), header files (in directory include/sketo), and scripts
(bin/sketocxx and bin/sketorun) will be installed by this command.

For more details, please see the INSTALL file included in the archive.

You can try the SkeTo library with several examples included in the directory samples
of the package. For example, you can compile the program variance.cpp? by the following
command (You may need to specify the full-path to the sketocxx script installed so far). The
script sketocxx invokes C++/MPI compiler with proper options for the SkeTo library.

sketocxx -02 -o variance variance.cpp

Then you can execute the file by the sketorun script. For example, if you want to execute it
with four processes, you type as follows. Note that some options may be different on your MPI
library.

(For mpich user) sketorun -np 4 variance 10 1
(For mpich2 user: after executing mpd) sketorun -n 4 variance 10 1

The script sketorun starts the program with MPI library.

1.2 Tutorial: Computing Variance

Variance is the average of the square derivation. Assume that the input data are given as an

array [ag,ar,...,a,—1], then the mathematical definition of the variance is given as follows.
1 n—1 n—1
_ 2 _
var = — E (a; — ave)®  where ave = — E a;
n 4 n-
=0 =0

A simple translation of the above definition into C+4 program yields the following sequential
program.

int main(int, char**) {
int n;
// ... initialization of the input array al]

double sum = O;

for (int i = 0; i < n; i++) {
sum += ali];

}

double ave = sum / n;

double sgsum = O;

for (dint i = 0; i < n; i++) {
sgsum += (al[i] - ave) * (a[i] - ave);

}

double var = sqsum / n;

std::cout << var << std::endl;

return O;

*You can find this in the directory samples/list.



Now we develop a parallel program for computing the variance based on the above sequential
program.

Outline of Program

In this example, we use parallel list skeletons that manipulate distributed arrays in parallel.
To use them, you first need to include 1ist_skeletons.h file. A program that uses the SkeTo
library usually starts from the sketo::main function. The sketo::main function takes two
arguments of type int and charx* as the usual main function does. Thus, the outline of the
program with the SkeTo library becomes as follows.

#include <list_skeletons.h>

int sketo::main(int, char*x*x) {

int n;

// ... initialization of the input array al]
// ... data distribution ...

// ... parallel computation ...

// ... output result to console ...

return O;
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Then, we fill the three missing parts of this program.

Data Distribution

The SkeTo library provides classes for distributed data. A distributed array is given as an
instance of the dist_list class. In this example, we use a constructor that takes a sequential
array.

sketo::dist_list<int> da(a, n);
Since the elements of a are distributed among processes by this constructor, we need not be
aware of the data distribution.
Parallel Computation

We then manipulate distributed lists with parallel list skeletons. The definition of the parallel
list skeletons is given in Section 4.2. In this example, we use the following two parallel list
skeletons:

e map: a parallel skeleton that applies a given function to each element of the list, and

e reduce: a parallel skeleton that computes the summation with a given associative binary
operator.

The functions or operators for parallel skeletons should be function objects (a function object
is an instance of a class/structure that implements operator() method). You can also use
function objects defined in the STL <functional> and in <sketo/functions.h>.

An example code is given as follows



double ave = sketo::list_skeletons::reduce(std::plus<double>(), da) / size;

da = sketo::list_skeletons::map(std::bind2nd(std::plus<double>(), -ave), da);l}
da = sketo::list_skeletons: :map(sketo::functions::square<double>(), da);
double var = sketo::list_skeletons::reduce(std::plus<double>(), da) / size;

In the above program, std::plus<double>() is a function object that takes two doubles
and returns the sum of them, std: :bind2nd(std: :plus<double>(), -ave) is a function ob-
ject that is equivalent to the function defined as double f(double x) { return x - ave;
}, sketo: :functions: :square<double>() is a function that returns the squared value of the
input. The list of function objects defined in <sketo/functions.h> is given in Section 4.5.

We can also simplify this code by using the default namespaces as follows (or with the aliases
of namespaces).

using namespace sketo::list_skeletons;
using namespace sketo::functions;

double ave = reduce(std::plus<double>(), da) / size;

da = map(std::bind2nd(std::plus<double>(), -ave), da);
da = map(square<double>(), da);
double var = reduce(std::plus<double>(), as) / size;

Output Result to Console

Since the SkeTo library is based on the MPI library, if we use std: :cout the output will be
repeated by the number of processors. Therefore, we use sketo: : cout instead of std: : cout to
obtain a single output to console as follows.

sketo::cout << "variance: " << var << std::endl;

We can use manupulators such as std: :endl defined in STL here.

1.3 Tutorial: Computing w by Monte-Carlo Method

Let’s consider computing the 7 (= 3.1415926535 - - - ) by the Monte-Carlo method. The basic
idea is to estimate the area A, of a quarter circle whose radius is 1, and obtain the 7 as
m = 4% A,. The following method gives us a way to estimate the area A, (and thus the 7).

Given a sequence [(xo,%0), (1,Y1)s -+, (Tn—1,Yn—1)] of random points whose components
(i.e., z; and y;) independently follow the uniform distribution U (0, 1), an estimation 7 of the «
is given by counting the number of those points whose distance from (0, 0) is less than or equal
to 1.

n—1
T=4x% (Z(if z? 4+ y? <1 then 1 else 0)) /n
i=0

A simple translation of the above algorithm into C+4 program yields the following sequential
program.

int main(int, charx*x*) {
int n;



// ... initialization of the random generator

int count = 0;
for (int 1 = 0; i < n; i++) {

double x = rand();
double y = rand();
count += x * x +y *x y<=1.07 1 : 0;

}

double pi = 4.0 * count / n;
std::cout << pi << std::endl;
return O;

Now we develop a parallel program using our parallel skeletons. The archive of the SkeTo
library includes the complete code of this example (samples/list/mcpi.cpp).

Outline of Program

In this example, we use parallel list skeletons that manipulate distributed arrays in parallel. Sim-
ilar to the first tutorial that computes the variance, you first need to include list_skeletons.h
file. The outline of the program with the SkeTo library becomes as follows. In this example, we
use default namespaces.

#include <list_skeletons.h>

using namespace sketo;

using namespace sketo::list_skeletons;
typedef std::pair<double,double> point;

// ... user-defined function objects

int sketo::main(int, char*x*) {

// ... initialization of the random generator ...
// ... data distribution ...

// ... parallel computation ...

// ... output result to console ...

return O;

}

Then, we fill the three missing parts of this program.

Data Distribution

A distributed array is given as an instance of the dist_list class. There are two ways to create
a distributed array: distributing a sequential array, and generating elements by a generator
function. The former has been already given in the variance example.

In this example, we use the latter way to generate a distributed sequence of random points.
The generate skeleton creates a distributed array according to a given generator function to pro-
duce elements from its indices. Here, we use point (another name of std: : pair<double,double>)jj
as the type of points, and randpair is the generator function (a user-defined function object
shown below).



dist_list< point > ps = generate(n, randpoint);;

The declaration of the user-defined function object randpoint is as follows. It should be
defined before the function sketo: :main.

struct randpoint_t : public sketo::functions::base<point (int)> {
point operator() (int /* x */) const {
return point((std::rand()*1.0 / RAND_MAX), (std::rand()*1.0 / RAND_MAX));
}

} randpoint;

The superclass sketo::functions: :base<point (int)> indicates the type of the function
object; it takes an int (i.e., the index) and returns a point .

Parallel Computation

We then carry out computation on distributed lists with parallel list skeletons. In this example,
we use the map and reduce skeletons.
An example code is given as follows.

dist_list<double> ds = map(distance, ps);
dist_list<double> inouts = map(inout, ds);
double pi = reduce(plus, inouts) / size * 4;

Here, we first use the map skeleton twice to compute the distance from the origin (0, 0) for each
point, and to determine the distances are less or equal to 1 or not, and then we use the reduce
skeleton to count the number of points contributing to the m. Declaration of the user-defined
function objects is shown below.

struct distance_t : public sketo::functions::base<double (point)> {
double operator() (point x) const {
return x.first * x.first + x.second * x.second;

}

} distance;

struct inout_t : public sketo::functions::base<double (double)> {
double operator() (double x) const {
return x <= 1.0 7 1.0 : 0.0;

}

} inout;

struct plus_t : public sketo::functions::base<double (double, double)> {
double operator() (double x, double y) const {
return x + y,;

}
} plus;

Note that we can use std::plus<double>() instead of our-defined plus. iwasaki: #pp.7-8 [
sequential code J 0 OO O Oreturn x.first * x.first + x.second * x.second <= 1.0 7

1: 0;000f0000000000000mMapl0000000 (000000 dist list<int>0)]
O0000000



Output Result to Console

We use sketo: :cout instead of std: :cout for the output to console as follows.

sketo::cout << "pi = : " << pi << std::endl;
1.4 Tutorial: Computing an Addition of Multi-Precision Num-

bers

Let’s consider computing an addition of two multi-precision numbers represented as arrays of
integers. Here, we assume that an n-digit base-b multi-precision number X = Y " g pn—1-i

is represented by an integer array x = |20, Z1,...,Zn—1] (where 0 < z; < b). Given two integer
arrays r = [xo,Z1,...,Tn—1] and y = [Y0,Y1,--.,Yn—1] that represent numbers X and Y, the
objective is to compute an array z = [zo, 21, . . ., 2n—1] and the carry c that represent Z = X +Y
(i.e., Z is represented by |c, 20, 21, - - - , Zn—1]):

Zz ozzbn 1— Z-i—Cbn_Z szbn 1— Z_'_Zz oyzbn_l_i
where 0 < z; <b,0<ec< 2

A simple sequential program to obtain z and c is given as follows.

int main(int, char*xx) {

int n;
// ... initialization of the input numbers x[] and y[]
int ¢ = 0;

for (int i = n-1; i >= 0; i--) {
z[i] = x[i] + y[i] + c;
if(z[i] >= b) {

c =1;
z[i] -= b;
} else {
c=0
}
}
// output the result
std::cout << (¢ == Q 7 " ": "),
for (int 1 = 0; i < n; i++)
std::cout << " " << z[i];
std::cout << std::endl;
return O;

The above simple program is completely sequential. Therefore, we introduce some invention
to parallelize it. The resulting program introduces several extra arrays ps (propagators), gs
(generator), and cs (carries): ps[i] indicates a carry from the lower digit is propagated to the
upper digit at ith digit; gs[i] indicates a carry is generated at ith digit; cs[i] is the resulting
carry to be added at ith digit. This invention is well known in the field of electronic circuits.
The resulting code is as follows:

10



int main(int, charxx) {
// ... initialization of the input numbers x[] and y[]

for (int i = 0; i < n; i++) {
z[i] = x[i] + y[il;
}

for (int i = 0; i < n; i++) {
psli]l = z[i] == base - 1;
gs[i] = z[i] >= base;

}

cs[n-1] = 0; // no carry to LSD

for (int i = n-1; i >=1; i--) {
csli-1] = (ps[i] && cs[il) || gslil;

}

int ¢ = (ps[0] && cs[0]) || gs[0];

for (int 1 = 0; i < n; i++) {
z[i] = (z[i] + cs[i]) % base;

}

// output the result

std::cout << (¢ == 0 7 " ": "1");

for (int i = 0; i < n; i++)
std::cout << " " << z[i];

std::cout << std::endl;

return O;

Now we develop a parallel program for addition of multi-precision numbers using our par-
allel skeletons. The archive of the SkeTo library includes the complete code of this example
(samples/list/mpadd.cpp).

Outline of Program

The outline of the program with the SkeTo library becomes as follows.

#include <list_skeletons.h>

using namespace sketo;

using namespace sketo::list_skeletons;
typedef std::pair<int, int> ipair;

// ... user-defined function objects

int sketo::main(int, charx*x) {
// ... initialization of the input numbers x[] and y[]

11



// ... data distribution ...

// ... parallel computation ...
// ... output result to console ...
return O;

}

Then, we fill the three missing parts of this program.

Data Distribution

In this example, we use a constructor of dist_list that takes a sequential array.

sketo::dist_list<int> dx(x, n);
sketo::dist_list<int> dy(y, n);

The elements of x (y) are distributed to processes in this constructor.

Parallel Computation

We then manipulate distributed lists with parallel list skeletons. In this example, we use map
and the following two parallel list skeletons:

e zipwith: a parallel skeleton that applies a given function to each pair of elements of the
lists, and

e scanr: a parallel skeleton that computes a prefix-sum with a given associative binary
operator.

An example code is given as follows.

dist_list<int> dz = zipwith(std::plus<int>(), dx, dy);
dist_list<ipair> dgsps = map(generator_propagator, dz);
dist_list<int> dcs = map(snd, scanr(timesr, e, dgsps, &all));
dist_list<int> dr = zipwith(addmod, dz, dcs);

int ¢ = snd(all);

Declaration of the user-defined function objects is shown below.

struct randint_t : public sketo::functions::base<int (int)> {
int operator() (int /* a */) const {
return (int) ((std::rand() * 1.0 / RAND_MAX) * base) 7 base;
}

} randint;

struct generator_propagator_t : public sketo::functions::base<ipair (int)> {
ipair operator() (int x) const {
return ipair(x == base-1, x >= base);
}

} generator_propagator;
struct snd_t : public sketo::functions::base<int (ipair)> {

int operator() (ipair x) const {
return x.second;

12



}
} snd;

struct timesr_t : public sketo::functions::base<ipair (ipair, ipair)> {
ipair operator() (ipair x, ipair y) comnst {
return ipair(x.first && y.first, (x.first && y.second) || x.second);
}
} timesr;
ipair identity_element(const timesr_t&) {
return ipair(1l, 0);

}

struct addmod_t : public sketo::functions::base<int (int, int)> {
int operator() (int x, int y) const {
return (x + y) % base;
}
} addmod;

The non-trivial part of the computation is the use of scanr skeleton followed by a map. This
part computes the result of the following for-loop.

cs[n-1] = 0; // no carry to LSD

for (int i = n-1; i >=1; i--) {
cs[i-1] = (ps[i] && cs[il) || gsl[il;

}

The body of the for-loop is equivalent to the following computation with an associative operator
® that represents a matrix-multiplication on the Boolean semi-ring.

cs[i-11\ [pslil gslil cs[i]
1 )= o 1 )21

Therefore, we can use the scanr skeleton to compute products of the matrices < 0 1

s[i] gslil
P g >®
ps[n-1] gs[n-1]

0 1
the scanr computes this ®, except that it removes redundant computation about two numbers

in the lower row; they are always 1 and 0. Its definiition is given as follows.

e ® for each i from 0 to n-1 in parallel. The function object times of

(a,b) @ (a', b)) = (and,(a ) VD)

Output Result to Console

The output of the distributed array is carried out by the method print of dist_list.

sketo::cout << "x + y =" <K< (c=07 " " """ ) K" " roprint();

13



Chapter 2

Advanced Use of the SkeTo Library

2.1 Automatic Fusion Optimization

One of the most important features of the SkeTo library is that parallel skeletons are self-
equipped with an automatic optimization mechanism by fusion transformation. Since the op-
timization mechanism is implemented with templates techniques in standard C++, the opti-
mization works automatically at the compilation time (we can switch it off with a compilation
parameter). See [?] for technical details of the implementation of the optimization mechanism.
In this section, we see to which skeletons the optimization mechanism works.

Currently, the optimization mechanism works for parallel list skeletons and parallel matrix
skeletons. Two kinds of optimizations have been implemented: one is fusion transformation
and the other is overwriting a list with the result.

Fusion transformation is a program transformation that fuses consecutive calls of parallel
skeletons into one to remove intermediate data. Since we often develop a program by composing
several skeletons, this optimization may improve the performance of skeletal programs. Here
are the conditions for the optimization by fusion transformation:

e The fusion optimization only works on parallel skeletons that are written in a single
expression. For example, for the following program

bs = sketo::list_skeletons::map(f, as);
sketo::1list_skeletons: :map(g, bs);

cs
the fusion optimization does not work. Instead, we should write as follows.

cs = sketo::list_skeletons: :map(g,
sketo::1list_skeletons: :map(f, as));

e The fusion optimization works for parallel list skeletons generate, map, wap_with_index,
zip, zipwith, reduce, scan, scanr, postscan, postscanr, shiftl, and shiftr.

The other optimization is to overwrite a list with the result of computation. For example,
for the program

as = sketo::list_skeletons: :map(f, as);

the buffer originally allocated for variable as is reused after the computation. In general, this
optimization is not always performed since it may be unsafe to do so. Here are the conditions
for the optimizing of overwriting a list.

14



e The variable for the resulting list has no alias, i.e., there is no other variable that shares
allocated space with the variable.

e When the right-hand side of the sentence has parallel skeletons applied to the variable,
they are either map, wap_with_index, zip, zipwith, scan, scanr, postscan, or postscanr. Note
that we can use any parallel skeletons if they are applied to other variables (with no
sharing of data).

e When the right-hand side of the sentence has a shiftl or shiftr skeleton applied to the
variable, then the skeleton should be called at the root of the call tree of skeletons. For
example, combination of map followed by shiftl

as = shiftl(a, map(f, as));
is optimized, but combination of shiftl followed by map
as = map(f, shiftl(a, as));

1s not.

For some reasons, you may not want to automatically optimize skeletal programs. In such
cases, you can tell your compiler by defining macro variable __SKETO_NO_FUSION__. The easiest
way is to add “-~D__SKETO_NO_FUSION__ into the command-line parameter, as follows.

sketocxx -D__SKETO_NO_FUSION__ (other parameters)  (source file)

2.2 Function Objects

A function object is an object that can act as a function by overloading operator (), and is often
given as a parameter to an abstract algorithm to make a concrete computation. For example,
a sorting algorithm may receive a function object that is used to compare elements. The SkeTo
library also asks users to specify functions objects to make concrete parallel computation with
the skeletons, in which users can use both ready-made functions objects (in the SkeTo library
or STL) and their defined ones. This section explains how we can define new function objects
for parallel skeletons of the SkeTo library.

The SkeTo library provides template classes for nullary-, unary-, binary-, and ternary-
functions (functions with zero, one, two, and three arguments, respectively) as listed in Sec-
tion 4.5.1. When we want to define a function object for a parallel skeleton, we should make a
class that inherits one of these base classes with suitable type information.

For example, let us define a class of function objects that take an integer and returns a real
number whose value is a cube of the input. Here is program code for this.

class cubed_t : public sketo::functions::base<double (int)> {
public:
double operator() (const int& x) const {
return static_cast<double>(x * x * X);
}
} cubed;

15



In the first line, we define the class cubed_t to inherit the template class sketo: :functions: :base,|
whose template parameter double (int) indicates that the input is of type int and the output
is of type double. The operator () member function should be public and constant as we can
see in the program above. It is worth noting that we can optimize the function object by using
variables of type “const X&” for some input type X.

Some parallel skeletons require associative binary operators with their unit. For example,
the binary operator ® defined for addition of the multi-precision numbers in Section 1.4

(a,b) @ (a',b') = (aAd,(a D) VD)

has its unit ( True, False). To specify the unit, we define an overloaded function identity_element,|j
which takes a function object and returns the unit, as follows. Note that in the program below,
ipar is a pair of integers and True and False are denoted by 1 and 0, respectively.

ipair identity_element(const timesr_t&) {
return ipair(1l, 0);

¥

2.3 User-defined Data Structures

Usually, we need to define and use specific structures in our programs, rather than simple data
types such as int or double. In this section, we explain how to use such structures. We classify
the structures into the following three.

e Simple data structures: those that are put simply on stack area.
e Data structures on heap area: those that require serialization.

e More complex data structures: those that require more complicated treatment when seri-
alization.

2.3.1 Simple Data Structures

Many simple data structures defined with struct or class are easily used with the SkeTo
library. For example, if we want to use a structure for points in the 3D space we can simply
define it as

struct point3D {
double x, y, z;
}s;

and use it for elements of distributed data.
Note that, even if we use pointers for the member variables, we need to serialize it as seen
in the following section.

2.3.2 Data structures on Heap Area

We may want to use more complicated data structure with dynamic allocation of memory from
heap area or with support of containers such as vector in STL. These data structure includes
some data allocated on heap area, and the SkeTo library asks us the way to serialize such data.

For example, if we want to use two variable-length arrays for the elements of a list (the
following tutorial of the bracket-matching problem is such a case), we may define the following
structure.
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struct vect_element {
std: :vector<int> vecl;
std: :vector<double> vec?2;

};

Since the actual data of vecl and vec2 are allocated in another place from vect_element,
the SkeTo library asks how to access and serialize such data for background communication.
Therefore, we need to define the structure as follows when we use the SkeTo library.

struct vect_element : sketo::serialization::require_serialization {
std: :vector<int> vecil;
std: :vector<double> vec2;

private:
friend class sketo::serialization::access;
template <class Archive>
void serialize(Archive& ar, const unsigned int /* version */) {
ar & vecl;
ar & vec2;
}
};

In the program above, the structure inherits sketo: :serialization: :require_serialization]]

to let the compiler know that serialization of this structure is necessary during communication.
The friend declaration friend class sketo::serialization::access; is just a charm. We
specify how to serialize data in the template function serialize. The way to specify serializa-
tion is very similar to that of boost::serialization in the boost library. We just place the
data to be serialized one by one, with the & operator. It is worth noting that we need not to
place the contents of std: :vector, std: :string, and std: :pair since they are already defined
properly in the SkeTo library.

2.3.3 More Complex Data structures

Sometimes, we may need to use more complicated data structures, for example, ones that require
dynamic allocation before copying them. Among the samples of list skeletons, such a program
is cgstab_sketo_3D_ng.cpp that solves systems of linear equations, in which we use complex
data structures that implement reference counting to avoid unwilling copies.

In such cases, we need to implement the serialization function more carefully. In fact, the
serialization function will be called for the following three purposes.

e Size counting: In this phase, the serialization function just counts the size of data and
does not get nor put the value of data.

e Serialization: In this phase, the serialization function copies the data to the buffer prepared
for communication.

e Deserialization: In this phase, the serialization function copies the data back from the
buffer given after communication.

We can distinguish these three phases with the member variable ar_type of Archive:

e sketo::serialization::AR_SIZE_COUNT: size counting phase,

17



e sketo::serialization::AR_SERIALIZE: serialization phase, and
e sketo::serialization::AR_DESERIALIZE: deserialization phase.

In the sample program cgstab_sketo_3D_ng.cpp, we allocate a new buffer in the deserial-
ization phase. Please see the program for details.
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Chapter 3

Experimental Features in SkeTo

This chapter shows experimental features of SkeTo library to provide better programmability
for skeleton programs. These features are realized by a successful fusion of the current template-
based implementation of SkeTo and the new features of C++0x (the next C++ specification).

Currently, the following experimental features of SkeTo only work on g++ version 4.5. So,
SkeTo has to be configured with an MPI that uses g++ version 4.5 as its base compiler. For
example, if you have mpich2 compiled with g++ version 4.5 in directory /usr/local/mpich2-
1.2.1p1-g++4.5, your SkeTo should be configured as follows.

./configure --with-mpi=/usr/local/mpich2-1.2.1pl-g++4.5

Also, to use the following experimental features, we have to specify option -std=gnu++0x. For
example, to compile sample program var-lambda.cpp, we need to use a command like below.

sketocxx var-lambda.cpp -o var-lambda -03 -std=gnu++0x

3.1 Use of Lambda Expressions

This experimental feature supports the use of lambda expressions in skeletons. Lambda expres-
sions are very useful to build concise programs using higher-order functions (i.e., computation
patterns) in functional programming. Skeletons in SkeTo are in fact higher-order functions, so
lambda expressions are also very useful for concise programming with SkeTo.

Users can use lambda expressions of C++0x (the next C++ specification) in calls for skele-
tons. For example, we can write the following program to compute variance.

using namespace sketo::list_skeletons;

using namespace sketo::functions;

auto plus = [](double a, double b){return a + b;};
double ave = reduce(plus, da) / size;

auto db = map([ave] (double a){return a - ave;}, da);
auto dc = map([] (double a){return a * a;}, db);
double var = reduce(plus, dc) / size;

A lambda expression can be supplied to a skeleton directly as its argument. For example, the
second map directly receives the lambda expression [] (double a){return a * a;}. It is also
possible to store a lambda expression to a variable and supply it to skeletons, which is useful
if the lambda expression is used many times. In the above program, the variable plus holds a
lambda expression [] (double a, double b){return a + b;}, and is used twice.
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3.2 Fusion of Separate Expressions

Owing to the auto-variables feature of C+4-0x, the use of SkeTo’s fusion mechanism becomes
more reasonable: Users need not to write a sequence of skeleton calls in a single expression to
fuse them.

Here is the program to compute the variance of a given distributed list da. Here, auto is
the new word of C+4-0x to declare auto-variables. The type of an auto-variable is inferred by
a compiler from its initializing expression.

using namespace sketo::list_skeletons;

using namespace sketo::functions;

auto plus = [](double a, double b){return a + b;};
double ave = reduce(plus, da) / size;

auto db = map([ave] (double a){return a - ave;}, da);
auto dc = map([] (double a){return a * a;}, db);
double var = reduce(plus, dc) / size;

Two maps and a reduce to compute the variance are now fused into one loop, although they
are used in separate expressions. This is owing to the use of auto.

If you want to control the region of the fusion, you can do it by specifying types explicitly
instead of using auto. For example, the following program fuses two maps, but they are not
fused into the last reduce, because the explicit type dist_list<double> of dc finalizes the
fusion.

auto db = map([ave] (double a){return a - ave;}, da);
dist_list<double> dc = map([](double a){return a * a;}, db);
double var = reduce(plus, dc) / size;

3.3 Use of Any Function Objects

This experimental feature frees users from the restriction that their defined function objects
have to inherit the specific super classes.

For example, we can use the following a class of function objects that take an integer and
returns a real number whose value is a cube of the input.

class cubed_t {
public:
double operator() (const int& x) const {
return static_cast<double>(x * x * X);
}
} cubed;

This class cubed_t can be used in calls of skeletons like map(cubed, da), although it does not
extend the specific super class like sketo: :functions: :base<double (int)>.

20



Chapter 4

Reference Manual

4.1 Class dist_list: Distributed List Structure

iwasaki: 40000000000 Imt/const 0000000000000 O0OOOOOOOODODO
000000000000 000000 &

The class dist_list provides containers for distributed lists. This class is a template class
dist_list(A) where A denotes the type of elements of a distributed list. This class provides only
a small number of methods for its manipulation. Instead, users can manipulate distributed lists
by using parallel list skeletons defined in the namespace sketo :: list_skeletons, which are listed
in Section 4.2.

The following code shows some methods provided in the dist_list class.

int array[] = {10, 11, 12, 13, 14, 15, 16, 17};
sketo::dist_list<int> as(8, array);
sketo::cout << as.get(6) << std::endl; // This outputs 16.

as.set(5, 20);
sketo::cout << as.get(5) << std::endl; // This outputs 20.

In the background of the dist_list class, the elements are distributed among processes. As you
see in the example above, when you pass a usual sequential array to the constructor it implicitly
distributes the elements and you do not need to know how the data are distributed. You can
use the gather method to restore a sequential array from a distributed list. The methods get
and set implicitly do communications among processes.

One important thing to be noted is that the distributed lists by the dist_list class have
different semantics from usual vector or list in the STL. The semantics of dist_list is similar to
that of an array in Java. An instance of the dist_list class has a reference to a concrete distributed
list. Allocation or deallocation of memory are performed automatically based on the reference
counting technique. Note that when they are copied only their references are copied, and if you
want one distributed list that is allocated independently from another you should use the clone
method explicitly. For example, in the following code; the distributed lists as and bs point the
same concrete distributed list while the distributed list cs points a different one.

sketo::dist_list<int> as(1);
as.set(0, 10);
sketo::dist_list<int> bs
sketo::dist_list<int> cs
as.set(0, 20);

as;
as.clone();

sketo::cout << as.get(0) << std::endl; // This outputs 20.
sketo::cout << bs.get(0) << std::endl; // This outputs 20.
sketo::cout << cs.get(0) << std::endl; // This outputs 10.
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4.1.1 Constructors
Type Signature:

template (typename A)
dist_list(A) :: dist_list();

template (typename A)
dist_list(A) :: dist_list(int size);

template (typename A)
dist_list(A) :: dist_list(int size,
const Ax array);

The first constructor is the default constructor. This constructor does nothing and no
distributed list is allocated here.

The second constructor takes an integer size and allocates a distributed list of the size. The
values of the elements in the allocated distributed list will not be initialized by this constructor.

The third constructor takes an integer size and an array array. This constructor allocates
a distributed list of the size whose elements are initialized with those of array.

In addition to these constructors, we provide copy constructors. The copy constructor has
semantics different from that of STL containers and much similar to that of arrays in Java as
we stated above. iwasaki: A DO D000 D00OOO0O &

4.1.2 clone
Type Signature:

template (typename A)
dist_list(A) dist_list(A) :: clone() const;

This method generates another copy of a distributed list.
As we stated above, the semantics of the dist_list is similar to that of the array in Java. We
need to use this method if we want an independent distributed list from the other.

4.1.3 get_global_size
Type Signature:

template (typename A)
int dist_list(A) :: get_global size() const;

This method returns the (whole) length of the distributed list.

4.1.4 get
Type Signature:

template (typename A)
A dist_list(A) :: get(int index) const;

This method returns the value of the indez-th element of the distributed list.
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4.1.5 set
Type Signature:

template (typename A)
void dist_list(A) :: set(int index,
A wvalue);

This method sets the index-th element’s value with value in the distributed list.

4.1.6 gather
Type Signature:

template (typename A)
void dist_list(A) :: gather(Ax buffer) const;

This method copies the value of the elements of the distributed list to the array buffer. The
user has to allocate sufficient space (i.e., the size given by get_global_size) for the array buffer.
iwasaki: @Dectail: 0000000 &

Detail: For reasons of performance, the user can pass the value NULL for buffer on
some processes. When the value of buffer is NULL on a process, then the values of
the distributed list will not be copied to the process. This feature is effective when
the gathered values are used only on some processes, for example when we output
the distributed list from the root process.

4.2 Namespace list_skeletons: Skeletons for Distributed Lists

The namespace list_skeletons provides parallel list skeletons that manipulate distributed lists in
parallel. The list skeletons are categorized as follows.

e Data generation: generate

Apply-to-all (map) and its variants: map, map_with_index, zip, zipwith

Reduction: reduce

e Prefix-sums (scan) and its variants: scan, postscan, gsacnl
e Suffix-sums (scanr) and its variants: scanr, postscanr, gsacnr
e Shift: shiftl, shiftr

In this section, we use two notations for showing informal definition of the parallel list
skeletons: one is mathematical definition and the other is C-like definition. The type signature
is provided for explanation and is different from the actual definition in the library. This is
due to the optimization mechanism with C4++ template programming technique. We use the
notation like Fobj(C(A, B)) for the type of function objects which denotes the type of a function
object that takes two arguments of types A and B and returns a value of type A).
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4.2.1 generate
Type Signature:

template (typename A)
dist_list(A) generate(int n,

Fobj(A (int)) f);

Mathematical Definition:

[ag,a1,...,an—1] = generate(n, f)
— a; = f(Z)

C-like Definition:
for (int i = 0; i < n; i++) { as[i] = £(i); }
return as;

This function returns a distributed list of n elements generated by a generator function f.

An important use of this function is to generate a list of increasing integers, [0, 1,...,n—1]. In
the following code, sketo: :functions::identity<int>() is a function object for the identity
function on integers.

dist_list<int> as
= sketo::1list_skeletons::generate(n, sketo::functions::identity<int>());

4.2.2 map
Type Signature:

template (typename A, typename B)
dist_list(B) map(Fobj(B (A)) f,
dist_list(A)  as);

Mathematical Definition:

[b07 b17 ) bn—l] = map<f7 [a(); Ay, ... 7an—1])
= b; = f(ai)

C-like Definition:
for (int i = 0; i < n; i++) { bs[i] = f(as[il); }
return bs;

This function applies a function f to every element of the distributed list as. iwasaki: & [J
000000 (fusionO0O0O0000)allocate00 000000 .M

4.2.3 map_with_index
Type Signature:

template (typename A, typename B)
dist_list(B) map_with_index(Fobj(B (int, A)) f,
dist_list(A) as);

Mathematical Definition:

[bo, b1, ..., bn—1] = map_with_index(f, [ao, a1, ..., an—1])
= b; = f(i,a;)
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C-like Definition:
for (int i = 0; i < n; i++) { bs[i]l = £(i, as[il); }
return bs;

This function applies a function f to every element of the distributed list as. The difference
from the map skeleton is that the argument function takes a 0-based index in addition to the
value of the element.

4.2.4 zip
Type Signature:

template (typename A, typename B)
dist_list(std :: pair(A, B)) zip(dist_list(A) as,
dist_list(B) bs);

Mathematical Definition:

[co, 1y vy Cno1] = zip([ag, a1, . .., an—1], [bo, b1, ..., bn_1])
— C; = (ai,bi)

C-like Definition:
for (int i = 0; i < n; i++) { cs[i] = mkpair(as[i], bs[il); }
return cs;

Condition: The length of two argument lists must be the same.

This function takes two distributed lists of the same length and returns a distirbuted list
whose element is a pair of the values for each index. This skeleton is a special case of the
following zipwith skeleton.

4.2.5 zipwith
Type Signature:

template (typename A, typename B,typename C)
dist_list(C') zipwith(Fobj(C (A, B)) f,
dist_list(A) as,
dist_list(B) bs);

Mathematical Definition:

[Co, Cly... ,Cn_l] = ZipWith(f, [ao, Aty ..., an_l], [bo, bi,..., bn—l])
= ¢; = f(ai, b;)

C-like Definition:
for (int i = 0; i < n; i++) { csl[i] = f(as[il, bs[il); }
return cs;

Condition: The length of two argument lists must be the same.

This function takes two distributed lists of the same length and returns a distributed list
whose element is the result of the application of the argument function f to each pair of the
values of the same index.
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4.2.6 reduce
Type Signature:

template (typename A)
A reduce(Fobj(A (A, A)) &,
dist_list(A) as);

Mathematical Definition:

b = reduce(®, [ap, a1, ..., an—1])
= b=aqPa1® - -Bap_1

C-like Definition:
b = as[0];
for (int i = 1; i < n; i++) { b = oplus(b, as[il); }
return b;

Condition: An operator @ should be associative: equation a ® (b ® ¢) = (a ® b) @ ¢ should
hold for any values a, b, and c.

This function collapses the distributed lists as into a single value with an associative binary
operator @.

4.2.7 scan
Type Signature:

template (typename A)
dist_list(A) scan(Fobj(A (4, A)) &,

A e,
dist_list(A) as,
Ax last = NULL);

Mathematical Definition:

[b(),b1, .. .,bn_l] = scan(@,e, [ao,al, ... ,an_l], last)
—b=e®aDa1 D - Da;_1 last =e®ap® a1 ®---Pap_1

C-like Definition:
for (int i = 0; i < n; i++) { bs[i] = e; e = oplus(e, as[i]); }
if (last) *last = e;
return bs;

Condition: An operator @ should be associative: equation a® (b®c¢) = (a®b) @ ¢ should hold
for any values a, b, and c. In the implementation, we use the unit of the associative operator
@, which is defined by identity_element function.

This function computes accumulation of the values of as from left to right starting from
e. The leftmost value of the distributed list becomes the argument e. The rightmost value of
the original distributed list will not be used for computation of the returned lists. Instead, the
totally accumulated value will be given through the pointer last, unless last is NULL (parameter
last can be omitted).
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4.2.8 scanr
Type Signature:

template (typename A)
dist_list(A) scanr(Fobj(A (A, A)) @,

A e,
dist_list(A) as,
Ax first = NULL);

Mathematical Definition:
[bo, bl, cee bn—l] = scanr(EB, e, [CLQ, ai, ... 7an_1],ﬁr5t)
= b =041 Pajir2B - Dan—1Pe
first=a0® a1 B---Pap—1Pe

C-like Definition:
for (int i = n-1; i >= 0; i--) { bs[i] = e; e = oplus(asl[il, e); }
if (first) *first = e;
return bs;

Condition: An operator @ should be associative: equation a ® (b ® ¢) = (a ® b) @ ¢ should
hold for any values a, b, and c. In the implementation, we use the (right) unit of the associative
operator @, which is defined by identity_element function.

This function computes accumulation of the values of as from right to left starting from
e. The rightmost value of the distributed list becomes the argument e. The leftmost value of
the original distributed list will not be used for computation of the returned lists. Instead, the
totally accumulated value will be given through the pointer first, unless first is NULL (parameter
first can be omitted).

When you use an associative but noncommutative operator for @, pay attention to the order
of the arguments of the operator. iwasaki: 4 OO0 OO0 000

4.2.9 postscan
Type Signature:

template (typename A)
dist_list(A) postscan(Fobj(A (A, A)) &,
dist_list(A) as);

Mathematical Definition:

[bo, b1, ..., by—1] = postscan(®, [ag, a1, ..., an-1])
—b=ayDar D - Da;

C-like Definition:
bs[0] = as[0];
for (int i = 1; i < n; i++) { bs[i] = oplus(bs[i-1], as[il); }
return bs;

Condition: The operator & should be associative: equation a & (b @ ¢) = (a ® b) & ¢ should
hold for any values a, b, and c.
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This function computes accumulation of the values of as from left to right. The leftmost
value of the returned distributed list is equal to the leftmost value of the original list, and
the rightmost value of the returned distributed list is the same as the result of reduction,
reduce(, as).

4.2.10 postscanr
Type Signature:

template (typename A)
dist_list(A) postscanr(Fobj(A (A, A)) &,
dist_list(A) as);

Mathematical Definition:

[b(), bi,..., bn—l] = scanr(@, [ao, ay, ... ,an_l])
= bi=a;Dai+1 D - Dan—1

C-like Definition:
bs[n-1] = as[n-1];
for (int i = n-2; i >= 0; i--) { bs[i] = oplus(as[i], bs[i+1]); }
return bs;

Condition: The operator @ should be associative: equation a @ (b @ ¢) = (a @ b) @ ¢ should
hold for any values a, b, and c.

This function computes accumulation of the values of as from right to left. The rightmost
value of the returned distributed list is equal to the rightmost value of the original list, and the
leftmost value of the returned distributed list is the same as the result of reduction, reduce(®, as).

When you use an associative but noncommutative operator for @, pay attention to the order
of the arguments of the operator.

4.2.11 gscanl
Type Signature:

template (typename A, typename B,typename C)
dist_list(B) gscanl(Fobj(B (B, A)) f,

B c,
dist_list(A as,
Fobj(C' (4)) g,

)
C (A
Fobj(C (C,C)) @&,
Fobj(B (B,C)) &,
Bx last = NULL);

Mathematical Definition:

[bOa bl) cee bn—l] = gscanl(f7 ¢, [CL[), ai, ... 7an—1]agv D, O, laSt)
:>bl :f("'f(f(c7a0),a1),---,ai—l)
last = f(--- f(f(c,a0),a1), ... an—1)
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C-like Definition:
for (int i = 0; i < n; i++) { bs[i]l = ¢; ¢ = f(c, alil); }
if (last) *last = c;
return bs;

Condition: On the functions f and g and the operators & and &, the following three equations
should hold for any values a, b, ¢1, c2 and cs (the alphabets are related to the type of values).
iwasaki: #da,b,c 000 00x,yz0000000 .

f(baa) :b@g(a)
(6901)66221)@(01@02)
Cl@(CQ@Cg) = (01@62)@63

As you see above, the operator @ should be associative, and the operators @ and © have the
same relation as + and — ((b—c¢1) —c2 = b—(¢1+¢2)). In the implementation of gscanl, we use
the unit of the associative operator @, which is defined by the identity_element function.

The sequential definition of this function is to accumulate the values of the distributed list
as with a function f from left to right starting from the value c¢. The totally accumulated value
will be given through the pointer last, if last is not NULL (parameter last can be omitted).

The name of this skeleton is from general scan(l). This skeleton is general in the sense that
the function f used in the accumulation may be nonassociative but the parallel computation is
performed through an associative operator @ related to the function f. The three equations in
the above condition form a sufficient condition for enabling parallel computation.

4.2.12 gscanr
Type Signature:

template (typename A, typename B,typename C')
dist_list(A) gscanr(Fobj(B (B, A)) f,

B c,

dist_list(A) as,

Fobj(C (4)) g,

Fobj(C (C,C)) &,

Fobj(B (B,C)) &,

Bx first = NULL);

Mathematical Definition:
[b()a b17 SR bnfl] = gscanr(fv ¢, [a'07 A1y ..y anfl]agv D, @,ﬁrst)
— bl = f( o f(f(cv an—1)7an—2)7 o 7a’i+1)

ﬁTSt = f( o f(f(cv an*1)7an*2)v s ,(10)

C-like Definition:
for (int i = n-1; i >= 0; i--) { bs[i] = ¢; ¢ = f(c, alil); }
if (first) *xfirst = c;
return bs;

Condition: On the functions f and g and the operators & and &, the following three equations
should hold for any values a, b, ¢1, c2 and cs (the alphabets are related to the type of values).
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iwasaki: dxyz [ &

f(b7a) :b@g(a)
boc1))©eca=b6(c1 D ca)
1@ (ca®ez)=(c1®c2)Pes

As you see above, the operator @ should be associative, and the operators @& and © have the
same relation as + and — ((b—c¢1) —c2 = b—(c1 +¢2)). In the implementation of gscanr, we use
the unit of the associative operator @, which is defined by the identity_element function.

The sequential definition of this function is to accumulate the values of the distributed list
as with a function f from right to left starting from the value c. The totally accumulated value
will be given through the pointer first, if first is not NULL (parameter first can be omitted).

The name of this skeleton is from general scanr. This skeleton is said general in the sense that
the function f used in the accumulation may be nonassociative but the parallel computation is
performed through an associative operator & related to the function f. The three equations in
the condition above form a sufficient condition for enabling parallel computation.

When you use a function f that is noncommutative, pay attention to the order of the
argument of the function. The order is different from that of the scanr and postscanr skeletons.
iwasaki: 4000000 M

4.2.13 shiftl
Type Signature:
template (typename A)
dist_list(A) shiftl(A fromR,
dist_list(A) as,
Ax toL = NULL);

Mathematical Definition:
[bo, b1, ..., bn—1] = shiftl(fromR, [ag, a1, ..., an—1], toL)
= b; = a;41
bn—1 = fromR
toL = ag

C-like Definition:
for (int i = 0; i < n-1; i++) { bs[i] = as[i+1]; }
bs[n-1] = fromR;
if (toL) *toL = al[0];
return bs;

This function shifts the elements of the distributed list as to the left direction. The rightmost
element of the returned list becomes fromR. The leftmost value of the original distributed list
well be given through the pointer toL, if toL is not NULL (parameter toL can be omitted.)

4.2.14  shiftr
Type Signature:

template (typename A)

dist_list(A) shiftr(A fromL,
dist_list(A) as,
Ax toR = NULL);
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Mathematical Definition:
[bo, b1, ..., by—1] = shiftr(fromL, [ag, a1, ..., an—1], toR)
= b; = a1
by = fromL
toR = an—1

C-like Definition:
for (int i = 1; i < n; i++) { bs[i] = as[i-1]; }
bs[0] = fromL;
if (toR) *toR = al[n-1];
return bs;

This function shifts the elements of the distributed list as to the right direction. The leftmost
element of the returned list becomes fromL. The rightmost value of the original distributed list
well be given through the pointer toR, if toR is not NULL (parameter toR can be omitted.)

4.3 Class dist_matrix: Distributed Matrix Structure

The class dist_matrix provides containers for distributed matrices. This class is a template class
dist_matrix(A) where A denotes the type of elements of a distributed matrix. This class provides
only a small number of methods for its manipulation. Instead, users can manipulate distributed
matrices by using parallel matrix skeletons defined in the namespace sketo :: matrix_skeletons,
which are listed in Section 4.4.
The following code shows some methods provided in the dist_matrix class.
int array[] = {10, 11, 12, 13, 14, 15};

sketo::dist_matrix<int> as(msize(2, 3), array);
sketo::cout << as.get(mindex(0, 2)) << std::endl; // This outputs 12.

as.set(mindex(1,1), 20);
sketo::cout << as.get(mindex(1,1)) << std::endl; // This outputs 20.

In the background of the dist_matrix class, the elements are distributed among processes.
As you see in the example above, when you pass a usual sequential array to the constructor,
it implicitly distributes the elements and you need not to know how the data are distributed.
You can use the gather method to restore a sequential array from a distributed matrix. The
methods get and set implicitly do communications among processes.

One important thing to be noted is that the distributed matrices by the dist_matrix class
have different semantics from usual vector or other containers in the STL. The semantics of
dist_matrix is similar to that of an array in Java. An instance of the dist_matrix class has a
reference to a concrete distributed matrix. Allocation or deallocation of memory are performed
automatically based on the reference counting technique. Note that when they are copied only
their references are copied, and if you want one distributed matrix that is allocated indepen-
dently from another you should use the clone method explicitly. For example, look at the
following code; the distributed matrices as and bs point the same concrete distributed matrix
while the distributed matrix cs points a different one.
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sketo::dist_matrix<int> as(msize(1,1));
as.set (mindex(0,0), 10); // Generate a distributed matrix of one element.l]

sketo::dist_matrix<int> bs
sketo::dist_matrix<int> cs

as;
as.clone();

as.set (mindex(0, 0), 20);

sketo::cout << as.get(mindex(0, 0)) << std::endl; // This outputs 20.
sketo::cout << bs.get(mindex(0, 0)) << std::endl; // This outputs 20.
sketo::cout << cs.get(mindex(0, 0)) << std::endl; // This outputs 10.

4.3.1 Matrix Indices and Sizes

The dist_matrix class uses two classes to receive (return) indices and sizes of matrices.

Class mindex is used to represent an index of a matrix; mindex(nr, nc) indicates the index
of nr-th row and nc-th column.

Similarly, class msize is used to represent a size of a matrix; msize(nr, nc) indicates the size
of a matrix that has nr rows and nc columns.

4.3.2 Constructors
Type Signature:

template (typename A)
dist_matrix(A) :: dist_matrix();

template (typename A)
dist_matrix(A) :: dist_matrix(msize size);

template (typename A)

dist_matrix(A) :: dist_matrix(msize size,
const Ax seq_data,
int org = —1);

The first constructor is the default constructor. This constructor does nothing and no
distributed matrix is allocated here.

The second constructor takes an msize (size of matrix) size and allocates a distributed
matrix of the size. The values of the elements will not be initialized by this constructor.

The third constructor takes an msize (size of matrix) size and an array seq_data. It also
takes an optional integer org. This constructor allocates a distributed matrix of the size and
the elements are initialized with those of seq_data (row-major). When the third argument org
is negative, the constructor assumes that all processes have the same seq_data and carries out
no communication. Otherwise it distributes the elements of seq_data on processor org to other
processors.

In addition to these constructors, we provide copy constructors. The copy constructor has
semantics different from that of STL containers and much similar to that of arrays in Java as
we stated above. iwasaki: A DD 000000000000 &

4.3.3 clone
Type Signature:

template (typename A)
dist_matrix(A) dist_matrix(A) :: clone() const;

32



This method generates another copy of a distributed matrix.
As we stated above, the semantics of the dist_matrix is similar to that of the array in Java.
We need to use this method if we want an independent distributed matrix from the other.

4.3.4 get_global_size
Type Signature:

template (typename A)
msize dist_matrix(A) :: get_global_size() const;

This method returns the (whole) size of the distributed matrix.

4.3.5 get
Type Signature:

template (typename A)
A dist_matrix(A) :: get(mindex index) const;

This method returns the value of the element at the index index of the distributed matrix.

4.3.6 set
Type Signature:

template (typename A)
void dist_matrix(A) :: set(mindex indez,
A value);

This method sets the value value at the index index of the distributed matrix.

4.3.7 gather
Type Signature:

template (typename A)
void dist_matrix(A) :: gather(Ax buffer) const;

This method copies the value of the elements of the distributed matrix to the array buffer.
The user has to allocate sufficient space (i.e., the size given by get_global_size) for the array
buffer.

iwasaki: #Detai:J 000000

Detail: For reasons of performance, the user can pass the value NULL for buffer
on some processes. When the value of buffer is NULL on a process, then the values
of the distributed matrix will not be copied to the process. This feature is effective
when the gathered values are used only on some processes, for example when we
output the distributed matrix from the root process.
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4.4 Namespace matrix_skeletons: Skeletons for Distributed Matri-
ces

The namespace matrix_skeletons provides parallel matrix skeletons that manipulate distributed
matrices in parallel. The matrix skeletons are categorized as follows.

e Data generation: generate

Apply-to-all (map) and its variants: map, map_with_index, zip, zipwith

Reduction: reduce

Prefix-sums (scan): scan

e Suffix-sums (scanr): scanr
e Shift: shift

In this section, we use two notations for showing informal definition of the parallel matrix
skeletons: one is mathematical definition and the other is C-like definition. The type signature
is provided for explanation and is different from the actual definition in the library. This is
due to the optimization mechanism with C++ template programming technique. We use the
notation like Fobj(C(A, B)) for the type of function objects which denotes the type of a function
object that takes two arguments of types A and B and returns a value of type A).

4.4.1 generate
Type Signature:

template (typename A)
dist_matrix(A) generate(msize size,
Fobj(A (mindex)) f);

Mathematical Definition:

a©,0) " a(O,n—l)
a .« e a n—
(1.,0) (1,n-1) = generate((m,n), f)
A(m—-1,0) """ A(m—1,n—1)

= ag ;) = f((4,7))

C-like Definition:
for (int i = 0; i < m; i++)
for (int j = 0; j < n; j++)
as[il[j] = f(mindex(i, j));
return as;

This function returns a distributed matrix of size size whose elements are generated by a
generator function f.

An important use of this function is to generate a matrix of indices. In the following code,
sketo::functions::identity<mindex>() is a function object for the identity function on
matrix indices.

dist_matrix<mindex> as
= sketo::matrix_skeletons::generate(n, sketo::functions::identity<mindex>());|}
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4.4.2 map
Type Signature:

template (typename A, typename B)
dist_matrix(B) map(Fobj(B (A)) f,
dist_matrix(A4) as);

Mathematical Definition:

b(o,o) T b(O,nfl) a,0) " G0;n-1)
b(l,o) T b(1,n71) _ map(f anm,o)y - A1;n-1) )
b(mfl,O) b(mfl,nfl) A(m-1,0) " Ym—1,n—-1)

= bi,j) = flag,)

C-like Definition:
for (int 1 = 0; i < m; i++)
for (int j = 0; j < m; j++)
bs[i] [j] = f(as[il[j1);

return bs;

This function applies the argument function f to every element of the distributed matrix
as.

4.4.3 map_with_index
Type Signature:

template (typename A, typename B)
dist_matrix(B) map_with_index(Fobj(B (mindez, A)) f,

dist_matrix(A) as);
Mathematical Definition:
b(0,0) b(o,n—1) a@,0) " 0n-1)

b . a e A
(1_’0) ) (1’_ 2 = map_with_index(f, (1,’0) _ (1’_ 2

b(m—1,0) b(m—1,n—1) A(m—-1,0) " Ym—-1,n—1)
= by = f((4,7),a65)

C-like Definition:
for (dint 1 = 0; i < m; i++)
for (int j = 0; j < n; j++)
bs[i] [j] = f(mindex(i, j), as[i][j]1);
return bs;

This function applies the argument function f to every element of the distributed matrix as.
The difference from the map skeleton is that the argument function takes an index in addition
to the value of the element.
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4.4.4 zip
Type Signature:

template (typename A, typename B)
dist_matrix(std :: pair(A, B)) zip(dist_matrix(A) as,
dist_matrix(B) bs);

Mathematical Definition:

= ¢i,j) = (a5 b(ig))

0,00 “°° C0O;n-1) ao,0) " 40mn-1) b(o,o)
¢(1,00 " C1;n-1) _ zip( a0 0 O(1,;n-1) b(l,O)
C(m—-1,0) ** " C(m—-1,n—1) A(m—-1,0) " Am—-1,n—-1) b(m—l,O) T

C-like Definition:

for (int 1 = 0; i < m; i++)
for (int j = 0; j < n; j++)
cs[i] [j] = mkpair(as[i]l[j]l, bs[i][jl1);
return cs;

Condition: The sizes of two argument matrices must be the same.

This function takes two distributed matrices of the same size and makes a pair of the values

for each index. This skeleton is a special case of the following zipwith skeleton.

4.4.5 zipwith
Type Signature:

template (typename A, typename B,typename C')

dist_matrix(C) zipwith(Fobj(C (A4, B)) f,
dist_matrix(4) as,
dist_matrix(B)  bs);

Mathematical Definition:

= (i) = flag,) 0G.j)

€00 " C0m-1) 40,0 T G0n-1) 2(0,0)

C DY C n— a DTS a n—

(1.70) . (1,. 1) — zipwith(, (1',0) . (17. 1) ’ (1.,0)
C(m—-1,0) """ C(m—1,n—1) A(m—-1,0) " A(m—1,n—-1) b(m—1,0)

b(O,n—l)
b1,n-1)

b(m—l,n—l)

C-like Definition:

for (int i = 0; i < m; i++)
for (int j = 0; j < n; j++)
cs[il[j] = f(as[il[j], bs[il[j1);

return cs;

Condition: The sizes of two argument matrices must be the same.

This function takes two distributed matrices of the same size, and applies the argument

function f to each pair of the values of the same index.
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4.4.6 reduce
Type Signature:

template (typename A)

A reduce(Fobj(A (A, A)) &,
Fobj(A (4, A)) ®,
dist_matrix(A)  as);

Mathematical Definition:

a0  @0n-1)
a e Q-
b = reduce(®, ®, (1,’0) (Ln=t) )
A(m—-1,0) " Am—-1,n—-1)

= b= (a(0,0) ®a(,1) @+ @ A0On-1))
®(a,0) @ - ®an 1)) D
B(A(m—-1,0) @ ® Am—1,n—1))

C-like Definition:
b = as[0][0];
for (int j = 1; j < n; j++) { b = otimes(b, as[0][j1); }
for (int i = 1; i < m; i++) {
c = as[i][0];
for (int j = 1; i < n; i++) { ¢ = otimes(c, as[i][j1); }
b = oplus(b, c);

}

return b;

Condition: Operators @ and ® should be associative: @ satisfies the equation a @ (b @ ¢) =
(a@b)@®c for any values a, b, and ¢, and so does ®. Also, they should satisfy the following abide
property: (a®b)® (c®d) = (a®c) P (b®d) for any values a, b, ¢, and d. It should be noted that
any commutative, associative operator @, such as +, *, and the maximum operator, satisfies
the abide property with itself: (a©®b)® (c®d) =a@bOcOd=aG0cObOd=(a®c)® (bOd).

This function collapses the distributed matrix as into a single value by using @ for vertical
direction and ® for horizontal direction.

4.4.7 scan
Type Signature:

template (typename A)

dist_matrix(A) scan(Fobj(A (A, A)) &,
Fobj(A (4,4)) ®,
dist_matrix(A) as);
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Mathematical Definition:

2(0,0) a z(o,n—l) a00) T 40mn-1)

“ e n— a PEEEEY a n—
(1.,0) (17. 1) — scan(®, ®, (1.,0) . (17. 1) )
b(m—1,0) b(m—l,n—1) A(m—-1,0) " A(m—-1,n—1)

= b(ij) = (a(0,0) ® a(0,1) ® -+ D ao,5))
@(a(m) R ® a(l,j)) @®---
®(ag0) @ ®agy))

Condition: The operators @ and ® should be associative: @ satisfies the equation a® (bPc) =
(a®b) @ e for any values a, b, and ¢, and so does ®. Also, they should satisfy the following abide
property: (a®b)®(c®d) = (a®c)® (b®d) for any values a, b, ¢, and d. It should be noted that
any commutative, associative operator ®, such as +, %, and the maximum operator, satisfies
the abide property with itself: (a©®b)® (c®d) =a®bOcOd=aGcObOd=(a®c)® (bOd).

This function computes accumulation of the values of as from top-left to bottom-right by
using @ for vertical direction and ® for horizontal direction.

4.4.8 scanr
Type Signature:

template (typename A)

dist_matrix(A) scanr(Fobj(A (A4, A)) @,
Fobj(A (4,4)) ®,
dist_matrix(4)  as);

Type Signature:

template (typename A)

dist_matrix(A) scanr(Fobj(A (4, A)) @,
Fobj(A (4,4)) ®,
dist_matrix(4)  as);

Mathematical Definition:

2(0,0) T z(O,nfl) ao,0) “°°  40;n-1)

.. n— a a n—
(1.,0) . (1,' 1) — scanr(®, ®, (1,0) (1,‘ 1 )
b(mfl,O) b(mfl,nfl) A(m-1,0) " ° Am—1,n—1)

= bg) = (a3,5) @ agij+1) @ - ® agip-1))
®(a(i41,5) @ @ Apigp1n—1)) D~
@(a(m—l,j) K- & a(m—l,n—l))

Condition: The operators @ and ® should be associative: @ satisfies the equation a® (b®c) =
(a®b) @ c for any values a, b, and ¢, and so does ®. Also, they should satisfy the following abide
property: (a®b)® (c®d) = (a®c)® (b®d) for any values a, b, ¢, and d. It should be noted that
any commutative, associative operator ®, such as +, *, and the maximum operator, satisfies
the abide property with itself: (a®b)©® (c®d) =a@bOcOd=a0cObOd=(a®c)® (bOd).

This function computes accumulation of the values of as from bottom-right to top-left.
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When you use an associative but noncommutative operator for @ or ®, pay attention to the
order of the arguments of the operator.

4.4.9 shift
Type Signature:

template (typename A)
dist_matrix(A) shift(dr, dc)(Fobj(A (mindex,A)) f,dist_matrix(A) as);

Mathematical Definition:

b(o,o) T b(O,nfl) ao,0) “°°  A0,n-1)
b N a R R
(1.70) . (1,. Y = Shift(dr,dc)(fv (1.70) (1,. Y )
b(mfl,O) b(mfl,nfl) A(m—-1,0) " A(m—1,n—1)
if0<i<mA0<j <nthen  ag
= b(; ;) = { otherwise f(mindex(i', '), a@r mod m,j* mod n))

where i/ =4 — dr and 7/ = j — dc

This function shifts (rotates) the elements of the distributed matrix as by (dr, dc). If the
index (4', j') is out of the original matrix, then the value of the element is computed by the given
function f. For example, you can carry out a simple rotation by letting f to be f(mi,a) = a.
Also, if you want to fill up the border with a boundary value b, you can use f(mi,a) = b,
because the function f is applied to only the elements moved beyond the border.

4.5 Namespace functions: Function Objects

In the SkeTo library, concrete computations of parallel skeletons is specified by function objects.
We can use function objects defined in the STL <functional> and <sketo/functions.h>, as
well as user-defined function objects. When we use a user-defined function object, we should
define it to inherit one of the base classes listed in Section 4.5.1 to inform the compiler about
the type of the function object.

4.5.1 Base classes
Type Signature:

template (typename R)
class base(R (void));

template (typename R,typename Al)
class base(R (Al));

template (typename R,typename Al,typename A2)
class base(R (Al, A2));

template (typename R,typename Al,typename A2, typename A3)
class base(R (Al, A2, A3));

When we use a user-defined function object, the function object should inherit one of these
classes. These classes are respectively for function objects with zero, one, two, and three
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arguments. For example, a function object that takes two integers and returns the absolute
value of their difference can be defined as follows.

class diff_int : public sketo::functions::base<int (int, int)> {
public:
int operator() (int x, int y) const {
return (x > y) ?x -y : y - X;
b
s

4.5.2 identity, caster
Type Signature:

template (typename A)
class identity {
A operator()(A z)

h

This function object takes a value z and simply returns the value!.

Type Signature:

template (typename A, typename B)
class caster {
B operator()(A x)

h

This function object takes a value x of type A, and returns the value by casting to type B.

4.5.3 fst, snd, mkpair, left, right
Type Signature:

template (typename A, typename B)
class fst {

A operator()(std :: pair(A, B) x)
b

This function object takes a pair (x1,x2) and returns its first element, i.e., 7.

Type Signature:

template (typename A, typename B)
class snd {

B operator()(std :: pair(A, B) x)
2

This function object takes a pair (x1,x2) and returns its second element, i.e., 3.

In the following of this section, we may omit “public” in the definition of a class.
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Type Signature:

template (typename A, typename B)
class mkpair {

std :: pair(A, B) operator()(A x, B y)
b

This function object takes two values x and y and returns a pair (z,y).

Type Signature:

template (typename A, typename B)
class left {
A operator()(A z, B y)

h

This function object takes two values x and y and simply returns the first argument .

Type Signature:

template (typename A, typename B)
class right {
B operator()(A z, B y)

h

This function object takes two values « and y and simply returns the second argument y.

4.5.4 square, max, min

Type Signature:

template (typename A)
class square {
A operator()(A z)

h

This function object takes a value x and returns the squared value of z, i.e. x>

Type Signature:

template (typename A)
class max {
A operator()(A z, A y)

h

This function object takes two values and returns the larger of them. This operator is
associative. The unit of this operator is provided for the cases where A is either int or double.

Type Signature:

template (typename A)
class min {
A operator()(A z, A y)

h

This function object takes two values and returns the smaller of them. This operator is
associative. The unit of this operator is provided for the cases where A is either int or double.
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