
SkeTo: Parallel Skeleton Library

Manual for Version 1.0

SkeTo Project
Web site: http://www.ipl.t.u-tokyo.ac.jp/sketo/

Contact email: sketo@ipl.t.u-tokyo.ac.jp

December 2, 2009

Abstract

SkeTo (Skeletons in Tokyo) is a constructive parallel skeleton library
written in C++ with MPI intended for distributed environments such as PC
clusters. SkeTo provides data parallel skeletons for lists, matrices, and trees.
(The version 1.0 only include parallel skeletons for lists, but other parallel
skeletons will be included in the later versions.) SkeTo enables users to write
parallel programs as if they were sequential, since the distribution, gathering,
and parallel computation of data are concealed within constructors of data
types or definitions of parallel skeletons.

This document consists of two parts. The first part provides tutorials.
After showing how to install the SkeTo library, we demonstrate programming
with the SkeTo library through an example. The second part is the reference
manual.

1

Contents

1 Overview 3
1.1 Quick Start . 3
1.2 Tutorial: Computing Variance . 4

2 Reference Manual 7
2.1 Class dist list: Distributed List Structure . 7

2.1.1 Constructors . 8
2.1.2 get global size . 8
2.1.3 get . 8
2.1.4 set . 8
2.1.5 clone . 9
2.1.6 gather . 9

2.2 Namespace list skeletons: Skeletons for Distributed Lists 9
2.2.1 generate . 10
2.2.2 map . 10
2.2.3 map with index . 10
2.2.4 zip . 11
2.2.5 zipwith . 11
2.2.6 reduce . 12
2.2.7 scan . 12
2.2.8 scanr . 13
2.2.9 postscan . 13
2.2.10 postscanr . 14
2.2.11 gscanl . 14
2.2.12 gscanr . 15
2.2.13 shiftl . 16
2.2.14 shiftr . 16

2.3 Namespace functions: Function Objects . 17
2.3.1 Base classes . 17
2.3.2 identity, caster . 18
2.3.3 fst, snd, mkpair, left, right . 18
2.3.4 square, max, min . 19

2

Chapter 1

Overview

SkeTo (Skeletons in Tokyo) is a constructive parallel skeleton library written in C++ with
MPI intended for distributed environments such as PC clusters. SkeTo provides data parallel
skeletons for lists (distributed one-dimensional arrays), matrices (distributed two-dimensional
arrays), and trees (distributed binary trees)1. SkeTo enables users to write parallel programs as
if they were sequential, since the distribution, gathering, and parallel computation of data are
concealed within constructors of data types or definitions of parallel skeletons. SkeTo is named
after the Japanese word Suketto, whose meaning is helper or supporter, in the hope that SkeTo
library will help programmers easily develop efficient parallel programs.

The SkeTo library is the results of the research in the “SkeTo Project”, which is a research
project working on skeletal parallelism (or algorithmic skeletons). The members of the SkeTo
project are from The University of Tokyo, The University of Electro-Communications in Japan,
National Institute of Informatics, and Kochi University of Technology. The SkeTo project has
been partially supported by: HPC Systems Inc., PRESTO program by Japan Science and Tech-
nology Agency (JST), Grant-in-Aid for Scientific Research (B), No. 17300005, Japan Society for
the Promotion of Science, and Grant-in-Aid for Scientific Research (C), No. 20500029, Japan
Society for the Promotion of Science.

1.1 Quick Start

You can install the SkeTo library by the following four steps.

1. Install a C++ compiler (e.g., GCC) and an MPI library (e.g., mpich).

2. Download an archive of the source files (SkeTo-x.xx.tar.gz or SkeTo-x.xx.zip) from the
website of the SkeTo project (http://www.ipl.t.u-tokyo.ac.jp/sketo/download.html) and
extract the files.

3. Configure the package for your system by the following command.

./configure

You can specify the place to which the SkeTo library is installed by --prefix option.
You can also specify the C++ compiler and the MPI library you want to use. For details,
please see the help by “./configure --help”.

1The version 1.0 only include parallel skeletons for lists, but other parallel skeletons will be included in the
later versions.

3

4. Compile the package and install the files.

make && make install

The library file (lib/libsketo.a), header files (in directory include/sketo), and scripts
(bin/sketocxx and bin/sketorun) will be installed by this command.

For more details, please see the INSTALL file included in the archive.
You can try the SkeTo library with several examples included in the directory samples

of the package. For example, you can compile the program variance.cpp2 by the following
command (You may need to specify the full-path to the sketocxx script installed so far). The
script sketocxx invokes C++/MPI compiler with the proper options for the SkeTo library.

sketocxx -O2 -o variance variance.cpp

Then you can execute the file by the sketorun script. For example, if you want to execute it
with four processes, you type as follows. Note that some options may be different on your MPI
library.

(For mpich user) sketorun -np 4 variance 10 1

(For mpich2 user: after executing mpd) sketorun -n 4 variance 10 1

The script sketorun starts the program with MPI library.

1.2 Tutorial: Computing Variance

Variance is the average of the square derivation. Assume that the input data are given as an
array [a0, a1, . . . , an−1], then the mathematical definition of the variance is given as follows.

var =
1
n

n−1∑

i=0

(ai − ave)2 where ave =
1
n

n−1∑

i=0

ai

A simple translation of the above definition into C++ program yields the following sequential
program.

int main(int, char**) {
// ... initialization of the input array a[] ...

double sum = 0;
for (int i = 0; i < n; i++) {
sum += a[i];

}
double ave = sum / n;
double sqsum = 0;
for (int i = 0; i < n; i++) {
sqsum += (a[i] - ave) * (a[i] - ave);

}
double var = sqsum / n;
std::cout << var << std::endl;
return 0;

}

Now we develop a parallel program for computing variance based on the sequential program
above.

2You can find this in the directory samples/list.

4

Outline of Program In this example, we use parallel list skeletons that manipulate dis-
tributed arrays in parallel. To use them, you first need to include list_skeletons.h file.
A program that uses the SkeTo library usually starts from the sketo::main function. The
sketo::main function takes two arguments of type int and char** as the usual main function
does. Thus, the outline of the program with the SkeTo library becomes as follows.

#include <list_skeletons.h>

int sketo::main(int, char**) {
// ... initialization of the input array a[] ...

// ... data distribution ...
// ... parallel computation ...
// ... output result to console ...
return 0;

}

Then, we fill the three missing parts of this program.

Data Distribution The SkeTo library provides classes for distributed data (Currently, the
SkeTo version 1.00 only provides distributed list structure). A distributed array is given as an
instance of the dist_list class. In this example, we use a constructor that takes a sequential
array.

sketo::dist_list<int> da(a, n);

The elements of a are distributed to processes in this constructor, and we need not be aware of
the data distribution.

Parallel Computation We then manipulate distributed lists with parallel list skeletons.
The definition of the parallel list skeletons is given in Section 2.2. In this example, we use the
following two parallel list skeletons:

• map: a parallel skeleton that applies a given function to each element of the list, and

• reduce: a parallel skeleton that computes the summation with a given associative binary
operator.

The functions or operators for parallel skeletons should be function objects (a function object
is an instance of a class/structure that implements operator() method). You can also use
function objects defined in the STL <functional> and in <sketo/functions.h>.

An example code is given as follows3.

double ave = sketo::list_skeletons::reduce(std::plus<double>(), da) / size;

da = sketo::list_skeletons::map(std::bind2nd(std::plus<double>(), -ave), da);
da = sketo::list_skeletons::map(sketo::functions::square<double>(), da);
double var = sketo::list_skeletons::reduce(std::plus<double>(), da) / size;

3In the following program, std::plus<double>() is a function object that takes two doubles and returns the
sum of them, std::bind2nd(std::plus<double>(), -ave) is a function object that is equivalent to the func-
tion defined as double f(double x) { return x - ave; }, sketo::functions::square<double>() is a func-
tion that returns the squared value of the input. The list of function objects defined in <sketo/functions.h> is
given in Section 2.3

5

We can also simplify this code by using the default namespaces as follows (or with the aliases
of namespaces).

using namespace sketo::list_skeletons;
using namespace sketo::functions;

double ave = reduce(std::plus<double>(), da) / size;

da = map(std::bind2nd(std::plus<double>(), -ave), da);
da = map(square<double>(), da);
double var = reduce(std::plus<double>(), as) / size;

Output Result to Console Since the SkeTo library is based on the MPI library, if we use
std::cout the output is repeated by the number of processors. Therefore, we use sketo::cout
instead of std::cout for the output to console as follows.

sketo::cout << "variance: " << var << std::endl;

Note that we use std::endl (not sketo::endl) when we output a newline.

6

Chapter 2

Reference Manual

2.1 Class dist list: Distributed List Structure

The class dist list provides containers for distributed lists. This class is a template class
dist list〈A〉 where A denotes the type of elements of a distributed list. This class provides only
a small number of methods for its manipulation. Instead, users can manipulate distributed lists
by using parallel list skeletons defined in the namespace sketo :: list skeletons, which are listed
in Section 2.2.

The following code shows some methods provided in the dist list class.

int array[] = {10, 11, 12, 13, 14, 15, 16, 17};
sketo::dist_list<int> as(8, array);
sketo::cout << as.get(6) << std::endl; // This outputs 16.

as.set(5, 20);
sketo::cout << as.get(5) << std::endl; // This outputs 20.

In the background of the dist list class, the elements are distributed to processes. As you see
in the example above, when you pass a usual sequential array to the constructor it implicitly
distributes the elements and you do not need to know how the data are distributed. You can
use the gather method to restore a sequential array from a distributed list. The methods get
and set implicitly do communications among processes.

One important thing to be noted is that the distributed lists by the dist list class have
semantics different from usual vector or list in the STL. The semantics of dist list is similar to
that of an array in Java. An instance of the dist list class has a reference to a concrete distributed
list. Allocation or deallocation of memory are performed automatically based on the reference
counting technique. Note that when they are copied only their references are copied, and if you
want one distributed list that is allocated independently from another you should use the clone
method explicitly. For example, look at the following code; the distributed lists as and bs point
the same concrete distributed list while the distributed list cs points a different one.

sketo::dist_list<int> as(1);
as.set(0, 10); // Generate a distributed list of one element.

sketo::dist_list<int> bs = as;
sketo::dist_list<int> cs = as.clone();

as.set(0, 20);

sketo::cout << as.get(0) << std::endl; // This outputs 20.
sketo::cout << bs.get(0) << std::endl; // This outputs 20.
sketo::cout << cs.get(0) << std::endl; // This outputs 10.

7

2.1.1 Constructors

Type Signature:
template 〈typename A〉
dist list〈A〉 :: dist list();

template 〈typename A〉
dist list〈A〉 :: dist list(int size);

template 〈typename A〉
dist list〈A〉 :: dist list(int size,

const A∗ array);

The first constructor is the default constructor. This constructor does nothing and no
distributed list is allocated here.

The second constructor takes an integer size and allocates a distributed list of the size. The
values of the elements will not be initialized by this constructor.

The third constructor takes an integer size and an array array . This constructor allocates
a distributed list of the size and the elements are initialized with those of array .

In addition to these constructors, we provide copy constructors. The copy constructor has
semantics different from that of STL containers and much similar to that of arrays in Java as
we stated above.

2.1.2 get global size

Type Signature:
template 〈typename A〉
int dist list〈A〉 :: get global size() const ;

This method returns the (whole) length of the distributed list.

2.1.3 get

Type Signature:
template 〈typename A〉
A dist list〈A〉 :: get(int index) const ;

This method returns the value of the element at the index index of the distributed list.

2.1.4 set

Type Signature:
template 〈typename A〉
void dist list〈A〉 :: set(int index ,

A value);

This method sets the value value at the index index of the distributed list.

8

2.1.5 clone

Type Signature:
template 〈typename A〉
dist list〈A〉 dist list〈A〉 :: clone() const ;

This method generates another copy of the distributed list.
As we stated above, the semantics of the dist list is similar to that of the array in Java. We

need to use this method if we want an independent distributed list from another.

2.1.6 gather

Type Signature:
template 〈typename A〉
void dist list〈A〉 :: gather(A∗ buffer) const ;

This method copies the value of the elements of the distributed list to the array buffer . User
should allocate enough space (i.e., the size given by get global size) for the array buffer .

Detail: For reasons of performance, a user can pass the value NULL for buffer on
some processes. When the value of buffer is NULL on a process, then the values of
the distributed list will not be copied to the process. This feature is effective when
the gathered values are used only on some processes, for example when we output
the distributed list from the root process.

2.2 Namespace list skeletons: Skeletons for Distributed Lists

The namespace list skeletons provides parallel list skeletons that manipulate distributed lists in
parallel. The list skeletons provided are categorized as follows.

• Data generation: generate

• Apply-to-all (map) and its variants: map, map with index, zip, zipwith

• Reduction: reduce

• Prefix-sums (scan) and its variants: scan, postscan, gsacnl

• Suffix-sums (scanr) and its variants: scanr, postscanr, gsacnr

• Shift operations: shiftl, shiftr

In this section, we use two notations for showing informal definition of the parallel list
skeletons: one is mathematical definition and the other is C-like program. The type signature
is provided for explanation and is different from the actual definition in the library. This is
due to the optimization mechanism with C++-template programming technique. We use the
notation like Fobj〈C(A,B)〉 for the type of function objects (Fobj〈C(A,B)〉 denotes the type
of a function object that takes two arguments of types A and B and returns a value of type A).

9

2.2.1 generate

Type Signature:
template 〈typename A〉
dist list〈A〉 generate(int n,

Fobj〈A (int)〉 f);

Mathematical Definition:
[a0, a1, . . . , an−1] = generate(n, f)

=⇒ ai = f(i)

C-like Definition:
for (int i = 0; i < n; i++) { as[i] = f(i); }
return as;

This function returns a distributed list of n elements generated by a generator function f .
An important use of this function is to generate a list of increasing integers, [0, 1, . . . , n−1]. In

the following code, sketo::functions::identity<int>() is a function object for the identity
function on integers.

dist_list<int> as
= sketo::list_skeletons::generate(n, sketo::functions::identity<int>());

2.2.2 map

Type Signature:
template 〈typename A, typename B〉
dist list〈B〉 map(Fobj〈B (A)〉 f,

dist list〈A〉 as);

Mathematical Definition:
[b0, b1, . . . , bn−1] = map(f, [a0, a1, . . . , an−1])

=⇒ bi = f(ai)

C-like Definition:
for (int i = 0; i < n; i++) { bs[i] = f(as[i]); }
return bs;

This function applies the argument function f to every element of the distributed list as.

2.2.3 map with index

Type Signature:
template 〈typename A, typename B〉
dist list〈B〉 map with index(Fobj〈B (int , A)〉 f,

dist list〈A〉 as);

Mathematical Definition:
[b0, b1, . . . , bn−1] = map with index(f, [a0, a1, . . . , an−1])

=⇒ bi = f(i, ai)

10

C-like Definition:
for (int i = 0; i < n; i++) { bs[i] = f(i, as[i]); }
return bs;

This function applies the argument function f to every element of the distributed list as.
The difference from the map skeleton is that the argument function takes an 0-based index in
addition to the value of the element.

2.2.4 zip

Type Signature:
template 〈typename A, typename B〉
dist list〈std :: pair〈A, B〉〉 zip(dist list〈A〉 as,

dist list〈B〉 bs);

Mathematical Definition:
[c0, c1, . . . , cn−1] = zip([a0, a1, . . . , an−1], [b0, b1, . . . , bn−1])

=⇒ ci = (ai, bi)

C-like Definition:
for (int i = 0; i < n; i++) { cs[i] = mkpair(as[i], bs[i]); }
return cs;

Condition: The length of two argument lists must be the same.

This function takes two distributed lists of the same length and makes a pair of the values
for each index. This skeleton is a special case of the following zipwith skeleton.

2.2.5 zipwith

Type Signature:
template 〈typename A, typename B, typename C〉
dist list〈C〉 zipwith(Fobj〈C (A,B)〉 f,

dist list〈A〉 as,
dist list〈B〉 bs);

Mathematical Definition:
[c0, c1, . . . , cn−1] = zipwith(f, [a0, a1, . . . , an−1], [b0, b1, . . . , bn−1])

=⇒ ci = f(ai, bi)

C-like Definition:
for (int i = 0; i < n; i++) { cs[i] = f(as[i], bs[i]); }
return cs;

Condition: The length of two argument lists must be the same.

This function takes two distributed lists of the same length, and applies the argument
function f to each pair of the values of the same index.

11

2.2.6 reduce

Type Signature:
template 〈typename A〉
A reduce(Fobj〈A (A,A)〉 ⊕,

dist list〈A〉 as);

Mathematical Definition:
b = reduce(⊕, [a0, a1, . . . , an−1])

=⇒ b = a0 ⊕ a1 ⊕ · · · ⊕ an−1

C-like Definition:
b = as[0];
for (int i = 1; i < n; i++) { b = oplus(b, as[i]); }
return b;

Condition: The operator ⊕ should be associative: equation a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c should
hold for any values a, b, and c.

This function collapses the distributed lists as into a single value with the associative binary
operator ⊕.

2.2.7 scan

Type Signature:
template 〈typename A〉
dist list〈A〉 scan(Fobj〈A (A,A)〉 ⊕,

A e,
dist list〈A〉 as,
A∗ last = NULL);

Mathematical Definition:
[b0, b1, . . . , bn−1] = scan(⊕, e, [a0, a1, . . . , an−1], last)

=⇒ bi = e⊕ a0 ⊕ a1 ⊕ · · · ⊕ ai−1 last = e⊕ a0 ⊕ a1 ⊕ · · · ⊕ an−1

C-like Definition:
for (int i = 0; i < n; i++) { bs[i] = e; e = oplus(e, as[i]); }
if (last) *last = e;
return bs;

Condition: The operator ⊕ should be associative: equation a⊕(b⊕c) = (a⊕b)⊕c should hold
for any values a, b, and c. In the implementation, we use the unit of the associative operator
⊕, which is defined by identity_element function.

This function computes accumulation of the values of as from left to right starting at e.
The leftmost value of the distributed list becomes the argument e. The rightmost value of the
original distributed list will not be used for computation of the returned lists. Instead, the
totally accumulated value will be given through the pointer last , if last is not NULL (parameter
last can be omitted).

12

2.2.8 scanr

Type Signature:
template 〈typename A〉
dist list〈A〉 scanr(Fobj〈A (A,A)〉 ⊕,

A e,
dist list〈A〉 as,
A∗ first = NULL);

Mathematical Definition:
[b0, b1, . . . , bn−1] = scanr(⊕, e, [a0, a1, . . . , an−1],first)

=⇒ bi = ai+1 ⊕ ai+2 ⊕ · · · ⊕ an−1 ⊕ e
first = a0 ⊕ a1 ⊕ · · · ⊕ an−1 ⊕ e

C-like Definition:
for (int i = n-1; i >= 0; i--) { bs[i] = e; e = oplus(as[i], e); }
if (first) *first = e;
return bs;

Condition: The operator ⊕ should be associative: equation a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c should
hold for any values a, b, and c. In the implementation, we use the (right) unit of the associative
operator ⊕, which is defined by identity_element function.

This function computes accumulation of the values of as from right to left starting at e.
The rightmost value of the distributed list becomes the argument e. The leftmost value of the
original distributed list will not be used for computation of the returned lists. Instead, the
totally accumulated value will be given through the pointer first , if first is not NULL (parameter
first can be omitted).

When you use an associative but noncommutative operator for ⊕, pay attention to the order
of the arguments of the operator.

2.2.9 postscan

Type Signature:
template 〈typename A〉
dist list〈A〉 postscan(Fobj〈A (A,A)〉 ⊕,

dist list〈A〉 as);

Mathematical Definition:
[b0, b1, . . . , bn−1] = postscan(⊕, [a0, a1, . . . , an−1])

=⇒ bi = a0 ⊕ a1 ⊕ · · · ⊕ ai

C-like Definition:
bs[0] = as[0];
for (int i = 1; i < n; i++) { bs[i] = oplus(bs[i-1], as[i]); }
return bs;

Condition: The operator ⊕ should be associative: equation a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c should
hold for any values a, b, and c.

This function computes accumulation of the values of as from left to right inside as. The
leftmost value of the returned distributed list is equal to the leftmost value of the original

13

list, and the rightmost value of the returned distributed list becomes the result of reduction,
reduce(⊕, as).

2.2.10 postscanr

Type Signature:
template 〈typename A〉
dist list〈A〉 postscanr(Fobj〈A (A,A)〉 ⊕,

dist list〈A〉 as);

Mathematical Definition:
[b0, b1, . . . , bn−1] = scanr(⊕, [a0, a1, . . . , an−1])

=⇒ bi = ai ⊕ ai+1 ⊕ · · · ⊕ an−1

C-like Definition:
bs[n-1] = as[n-1];
for (int i = n-2; i >= 0; i--) { bs[i] = oplus(as[i], bs[i+1]); }
return bs;

Condition: The operator ⊕ should be associative: equation a ⊕ (b ⊕ c) = (a ⊕ b) ⊕ c should
hold for any values a, b, and c.

This function computes accumulation of the values of as from right to left inside as. The
rightmost value of the returned distributed list is equal to the rightmost value of the original
list, and the leftmost value of the returned distributed list becomes the result of reduction,
reduce(⊕, as).

When you use an associative but noncommutative operator for ⊕, pay attention to the order
of the arguments of the operator.

2.2.11 gscanl

Type Signature:
template 〈typename A, typename B, typename C〉
dist list〈B〉 gscanl(Fobj〈B (B, A)〉 f,

B c,
dist list〈A〉 as,
Fobj〈C (A)〉 g,
Fobj〈C (C,C)〉 ⊕,
Fobj〈B (B, C)〉 ª,
B∗ last = NULL);

Mathematical Definition:
[b0, b1, . . . , bn−1] = gscanl(f, c, [a0, a1, . . . , an−1], g,⊕,ª, last)

=⇒ bi = f(· · · f(f(c, a0), a1), . . . , ai−1)
last = f(· · · f(f(c, a0), a1), . . . , an−1)

C-like Definition:
for (int i = 0; i < n; i++) { bs[i] = c; c = f(c, a[i]); }
if (last) *last = c;
return bs;

14

Condition: On the functions f and g and the operators ⊕ and ª, the following three equations
should hold for any values a, b, c1, c2 and c3 (the alphabets are related to the type of values).

f(b, a) = bª g(a)
(bª c1)ª c2 = bª (c1 ⊕ c2)
c1 ⊕ (c2 ⊕ c3) = (c1 ⊕ c2)⊕ c3

As you see above, the operator ⊕ should be associative, and the operators ⊕ and ª have the
same relation as + and − ((b− c1)− c2 = b− (c1 + c2)). In the implementation, we use the unit
of the associative operator ⊕, which is defined by the identity_element function.

The sequential definition of this function is to accumulate the values of the distributed list as
with the argument function f from left to right starting at the value e. The totally accumulated
value will be given through the pointer last , if last is not NULL (parameter last can be omitted).

The name of this skeleton is from general scan(l). This skeleton is said general in the sense
that the function f used in the accumulation may be nonassociative but the parallel computation
is performed through an associative operator ⊕ related to the function f . The three equations
in the condition above form a sufficient condition for enabling parallel computation.

2.2.12 gscanr

Type Signature:
template 〈typename A, typename B, typename C〉
dist list〈A〉 gscanr(Fobj〈B (B,A)〉 f,

B c,
dist list〈A〉 as,
Fobj〈C (A)〉 g,
Fobj〈C (C, C)〉 ⊕,
Fobj〈B (B,C)〉 ª,
B∗ first = NULL);

Mathematical Definition:
[b0, b1, . . . , bn−1] = gscanr(f, c, [a0, a1, . . . , an−1], g,⊕,ª,first)

=⇒ bi = f(· · · f(f(c, an−1), an−2), . . . , ai+1)
first = f(· · · f(f(c, an−1), an−2), . . . , a0)

C-like Definition:
for (int i = n-1; i >= 0; i--) { bs[i] = c; c = f(c, a[i]); }
if (first) *first = c;
return bs;

Condition: On the functions f and g and the operators ⊕ and ª, the following three equations
should hold for any values a, b, c1, c2 and c3 (the alphabets are related to the type of values).

f(b, a) = bª g(a)
(bª c1)ª c2 = bª (c1 ⊕ c2)
c1 ⊕ (c2 ⊕ c3) = (c1 ⊕ c2)⊕ c3

As you see above, the operator ⊕ should be associative, and the operators ⊕ and ª have the
same relation as + and − ((b− c1)− c2 = b− (c1 + c2)). In the implementation, we use the unit
of the associative operator ⊕, which is defined by the identity_element function.

15

The sequential definition of this function is to accumulate the values of the distributed list as
with the argument function f from right to left starting at the value e. The totally accumulated
value will be given through the pointer first , if first is not NULL (parameter first can be omitted).

The name of this skeleton is from general scanr. This skeleton is said general in the sense that
the function f used in the accumulation may be nonassociative but the parallel computation is
performed through an associative operator ⊕ related to the function f . The three equations in
the condition above form a sufficient condition for enabling parallel computation.

When you use a function f that is noncommutative, pay attention to the order of the
argument of the function. The order is different from that of the scanr and postscanr skeletons.

2.2.13 shiftl

Type Signature:
template 〈typename A〉
dist list〈A〉 shiftl(A fromR,

dist list〈A〉 as,
A∗ toL = NULL);

Mathematical Definition:
[b0, b1, . . . , bn−1] = shiftl(fromR, [a0, a1, . . . , an−1], toL)

=⇒ bi = ai+1

bn−1 = fromR
toL = a0

C-like Definition:
for (int i = 0; i < n-1; i++) { bs[i] = as[i+1]; }
bs[n-1] = fromR;
if (toL) *toL = a[0];
return bs;

This function shifts the elements of the distributed list as from right to left and the name
of this skeleton is from shift to left. The rightmost element of the returned list becomes fromR.
The leftmost value of the original distributed list well be given through the pointer toL, if toL
is not NULL (parameter toL can be omitted.)

2.2.14 shiftr

Type Signature:
template 〈typename A〉
dist list〈A〉 shiftr(A fromL,

dist list〈A〉 as,
A∗ toR = NULL);

Mathematical Definition:
[b0, b1, . . . , bn−1] = shiftr(fromL, [a0, a1, . . . , an−1], toR)

=⇒ bi = ai−1

b0 = fromL
toR = an−1

16

C-like Definition:
for (int i = 1; i < n; i++) { bs[i] = as[i-1]; }
bs[0] = fromL;
if (toR) *toR = a[n-1];
return bs;

This function shifts the elements of the distributed list as from left to right and the name
of this skeleton is from shift to right. The leftmost element of the returned list becomes fromL.
The rightmost value of the original distributed list well be given through the pointer toR, if toR
is not NULL (parameter toR can be omitted.)

2.3 Namespace functions: Function Objects

In the SkeTo library, concrete computations of parallel skeletons is specified by function objects.
We can use function objects defined in the STL <functional> and <sketo/functions.h>, as
well as user-defined function objects. When we use a user-defined function object, we should
define it to inherit one of the base classes listed in Section 2.3.1 to inform the compiler about
the type of the function object.

2.3.1 Base classes

Type Signature:
template 〈typename R〉
class base〈R (void)〉;

template 〈typename R, typename A1〉
class base〈R (A1)〉;

template 〈typename R, typename A1, typename A2〉
class base〈R (A1, A2)〉;

template 〈typename R, typename A1, typename A2, typename A3〉
class base〈R (A1, A2, A3)〉;

When we use a user-defined function object, the function object should inherit one of these
classes. These classes are respectively for function objects with zero, one, two, and three
arguments. For example, a function object that takes two integers and returns the difference of
them can be defined as follows.

class diff_int : public sketo::functions::base<int (int, int)> {
public:
int operator()(int x, int y) {
return (x > y) ? x - y : y - x;

}
};

17

2.3.2 identity, caster

Type Signature:
template 〈typename A〉
class identity {

A operator()(A x)
};

This function object takes a value x and simply returns the value1.

Type Signature:
template 〈typename A, typename B〉
class caster {

B operator()(A x)
};

This function object takes a value x of type A, and returns the value by casting to type B.

2.3.3 fst, snd, mkpair, left, right

Type Signature:
template 〈typename A, typename B〉
class fst {

A operator()(std :: pair〈A,B〉 x)
};

This function object takes a pair (x1, x2) and returns the first element of it x1.

Type Signature:
template 〈typename A, typename B〉
class snd {

B operator()(std :: pair〈A,B〉 x)
};

This function object takes a pair (x1, x2) and returns the second element of it x2.

Type Signature:
template 〈typename A, typename B〉
class mkpair {

std :: pair〈A, B〉 operator()(A x, B y)
};

This function object takes two values x and y and returns a pair of them (x, y).

Type Signature:
template 〈typename A, typename B〉
class left {

A operator()(A x,B y)
};

1In the following of this section, we may omit “public” in the definition of a class.

18

This function object takes two values x and y and simply returns the first argument x.

Type Signature:
template 〈typename A, typename B〉
class right {

B operator()(A x,B y)
};

This function object takes two values x and y and simply returns the second argument y.

2.3.4 square, max, min

Type Signature:
template 〈typename A〉
class square {

A operator()(A x)
};

This function object takes a value x and returns the squared value of x, i.e. x2.

Type Signature:
template 〈typename A〉
class max {

A operator()(A x,A y)
};

This function object takes two values and returns the larger of them. This operator is
associative and the unit is provided for A = int , double.

Type Signature:
template 〈typename A〉
class min {

A operator()(A x,A y)
};

This function object takes two values and returns the smaller of them. This operator is
associative and the unit is provided for A = int , double.

19

